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ABSTRACT

A Linear-Implicit Quantized State System (LIQSS) method is combined with a Latency Insertion Method
(LIM) to create a practical and efficient approach for simulating the dynamics of very stiff electrical systems.
The LIQSS method is used to asynchronously update each state in the system, where the LIM modeling
method is used to decouple the electrical system model at the individual node level making the asynchronous
solution possible. The DEVS specification for the QDL method is presented along with the detailed simula-
tion procedure. The combined method is validated by simulating a 40-state network model with a stiffness
ratio of 109.
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1 INTRODUCTION

In order to simulate the full range of dynamic behavior in a typical electrical system using a single dynamical
system model, a very high stiffness ratio (λmax/λmin) must be supported by the simulation method. The
uniform time-slicing of implicit solutions for modified nodal analysis or state space equations can only
simulate such stiff system models by using a very small time step, making simulation at the required time
scales impractical or impossible. To overcome the limitations of time-slicing methods for the simulation
of very stiff systems, a method is proposed that uses the asynchronous state update features of Quantized
Discrete Event Specification and the modeling advantages of Latency Insertion Method. This method is
called Quantized DEVS-LIM, or simply QDL.

This work builds upon other earlier attempts at using a Quantized DEVS formulation with a LIM modeling
approach (Benigni, Brown, Leonard, and Dougal 2015). The key improvements with the approach proposed
here are the use of a linear-implicit quantization function allowing the simulation of very stiff systems, and
the use of a LIM model that includes dependent sources. Additionally, this work contains the details of the
DEVS functions and simulation procedure needed to replicate the method. The source code for this work
written in MATLAB Script can be found at the URL https://github.com/joehood/qdevs.

https://github.com/joehood/qdevs
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In the following sections, the background on the QDEVS-based Linear-Implicit Quantized State System
(LIQSS) and the LIM modeling approach will be provided. The DEVS specification for the proposed QDL
method will then be given in the form of detailed descriptions of the relevant DEVS functions, along with a
description of the full simulation procedure. Finally, the results are presented from two example simulations.

2 QUANTIZED STATE SYSTEMS

The Quantized Discrete Event Specification (QDEVS) as described in (Zeigler 1999), provides a formal
DEVS specification of quantized, continuous systems. The Quantized State System formulation, based on
the QDEVS specification, and described in (Kofman and Junco 2001) provides a framework for applying
QDEVS to systems of ODEs. QSS begins with the assumption that a generic state equation system (SES)
described by

ẋ = f(x(t),u(t)) , (1)

where x is the state vector and u is the input vector, can be approximated by a Quantized State System (QSS)
in the form

ẋ = f(q(t),u(t)) , (2)

where q is the quantized value in the neighborhood of the state vector x, whose quantized resolution is
defined by the quantum size ∆Q. The states are quantized based on their trajectory using various hystere-
sis quantization functions depending on the specific QSS algorithm used. Importantly, QSS simulations
have guaranteed bounded error (Kofman and Junco 2001), and analytically stable systems cannot become
numerically unstable when using a fully-coupled QSS algorithm (Cellier and Elmqvist 1993).

Early QSS algorithms, such as those proposed in (Kofman and Junco 2001) and (Kofman 2002), suffer
from a severe inefficiency when applied to very stiff problems. Stiff ODEs can cause very high-frequency
numerical oscillations due to the interactions between very fast and very slow state transitions (Migoni,
Ernesto, and Cellier 2010). To address this, a Linear-Implicit QSS (LIQSS) algorithm is proposed in (Migoni
and Kofman 2007), which uses a semi-implicit solution in the quantization function to force steady-state
derivatives to zero and prevent troublesome oscillations for stiff systems. We will use the LIQSS algorithm
for the development of the QDL method.

3 LATENCY INSERTION METHOD

LIQSS requires a system described as a state equation system (SES) of the form ẋ = f(x(t),u(t)) (Cellier,
Kofman, Migoni, and Bortolotto 2008). A electrical system in the form of an equivalent circuit model can
be converted into a state equation system using the Latency Insertion Method (LIM), while still enforcing
energy-conservation laws.

The Latency Inversion Method, as described in (Schutt-Aine 2001), allows an electrical system model to be
de-coupled at the node level by exploiting existing latency, and inserting small, fictitious latency at nodes and
branches where no significant physical latency exists. The method enforces Kirchoff’s Voltage Law (KVL)
and Kirchoff’s Current Law (KCL) on the network. We are interested in an enhanced LIM formulation
that includes full mutual-coupling between states via controlled sources, as well as support for ideal voltage
and current sources. These enhancements are critical for the modeling of real-world systems with energy
conversion.
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DEVS requires an atomic model for each state variable. We define below two atomic model types: the LIM
node and the LIM branch that will be mapped to the standard DEVS specification.

3.1 Atomic LIM Components

The LIM node defines a KCL-based ODE for the state of a node voltage, and the LIM branch defines a
KVL-based ODE for the current flow between two arbitrary nodes. The generic LIM branch model with
dependent sources is shown in Figure 1.

Figure 1: Generic LIM node with dependent sources.

The KCL equation for the the ith node is

Ci
d
dt

vi(t)+Givi(t)−Hi(t)−Bikvk(t)−Sipip(t) =
Mi

∑
k=1

iik(t). (3)

The generic LIM branch model with dependent sources is shown in Figure 2.

Figure 2: Generic LIM branch with dependent sources.

The KVL equation for a branch from ith to the jth node is

vi(t)− v j(t) = Li j
d
dt

ii j(t)+Ri jii j(t)− ei j(t)−Ti jkvk(t)−Zi jpqipq(t). (4)

The LIM formulation also allows for ideal, externally controlled voltage node components and current
branch components. The method of inclusion of these components is trivial but worth noting. Because the
voltages at the branch ports are effectively dc quantities as far as the branch model is concerned during
the span of a DEVS time advance period, an ideal source does not require an special consideration by the
branch model, and it is treated the same as a latent LIM node voltage value. The same situation exists for
ideal current source branches in relation to the branch’s terminal nodes.
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3.2 LIM State Space Model

A LIM system model can be represented by a state space model, with partitions as shown in Equation 5.
We are interested in the LIM state equation because various components of the LIM state space model
will be used directly in the formulation of the QDL atomic model equations in the following section. Also,
simulating the LIM state space system using an implicit numerical ODE solver provides a trusted benchmark
solution with which to compare QDL simulation accuracy and computational performance.

The LIM system state space model is

d
dt

[
v
i

]
=

[
C−1(B−G) C−1(S−A)
L−1(T −AT ) L−1(Z −R)

][
v
i

]
+

[
C−1 0

0 L−1

][
H
E

]
, (5)

where A is the connection incidence matrix that encodes the topology of the network. The elements of A are
determined by

Ai,k =


1, if the ith node is connected to the ith terminal of the kth branch
−1, if the ith node is connected to the jth terminal of the kth branch
0, otherwise

. (6)

4 QDL DEVS SPECIFICATION

The DEVS specification of QDL consists of several function definitions corresponding to the formal DEVS-
based QSS functions outlined in (Kofman 2004). These are the Derivative Update function ( f ), the Internal
State Transition Function (δint), the External State Transition Function (or δext), the Time Advance Function
(ta), and the Quantization Function (Q). These are all fully described below in terms of the Linear-Implicit
QSS method and LIM models.

4.1 QDL Derivative Calculation

The derivative estimate is then determined from the LIM model for the nodes with

di =
Hii

Cii
− Gii

Cii
·qi +

1
Cii

Bi ·qnode +
1

Cii
(Si −Ai) ·qbranch, (7)

and for the branches with

dk =
Ekk

Lkk
− Rkk

Lkk
·qk +

1
Lkk

Zk ·qnode +
1

Lkk

(
Tk −AT

k
)
·qbranch, (8)

where Cii, Gii, Hii, Rkk, Lkk, and Ekk, are quantities from the LIM model at node i and branch k. Bi, Si, and Bi
are quantities from the LIM model at row i. Zk, Tk, and Zk quantities from the LIM model at row k. qi is the
quantized state at node i, qk is the quantized state at branch k, qnode is the vector of node quantized states,
and qbranch is the vector of branch quantized states.
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4.2 QDL Internal Transition Function

The internal state for each QDL atom is calculated by the internal transition function δint . An internal
transition occurs when the simulation time has advanced to the atom’s tnext value determined by its time
advance function ta.

In this function, the node voltage states are updated as

vi = vlast
i +dlast

i ·
(

t − t last
i

)
, (9)

and the branch currents are updated as

ik = ilast
k +dlast

k ·
(

t − t last
k

)
, (10)

where vi and ik are the voltage at node i and the current at branch k respectively.

After the states are updated, the t last values are saved:

t last
i = t, t last

k = t. (11)

Note that in the case of QDL, the behavior of the internal δint and the external δext transition functions
are identical. The difference is in how each is invoked. The internal transition is triggered when the the
simulation time t has advanced to the atom’s tnext value determined in the ta function, and the external
transition is triggered when one or more connected atoms’ quantized states change. Because the behavior
of the internal and external transition functions are identical, the confluent transition function δcon is not
required.

4.3 QDL Time Advance Function

The time until the next internal transition is determined from the time advance function ta.

The time advance calculation for node i is

tnext
i =


ti +(q̄i − vi)/di, if dlast

i > 0
ti +(q

i
− vi)/di, if dlast

i < 0
∞, otherwise

, (12)

and for branch k is

tnext
k =


tk +(q̄k − ik)/dk, if dk(t last

k )> 0
tk +(q

k
− ik)/dk, if dk(t last

k )< 0
∞, otherwise

, (13)

where q̄ and q are the upper and lower quantization limits respectively, and are dynamically updated by the
quantization function described in the following section.
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4.4 QDL Quantization Function

The quantization function quantizes the internal state after a transition has occurred. The LIQSS uses an
advanced hysteresis function that tracks the sign of the derivative, determines when the state is oscillating
between two quantized levels (±∆Q), and sets the quantized value such that the derivative is zero, using
an approximation of the Jacobian diagonal. Below is the description of the LIQSS atomic DEVS model
quantization method which is described in (Migoni and Kofman 2007).

Note that the quantization function is the same for node voltages and branch currents, but only the equations
for v and vi are included below for brevity. The same equations apply to the branch currents by substituting
i and ik in place of v and vi.

The following definitions will be used in the description of quantization method:

v is the set of node voltages,

u is the set of external inputs,

q is the set of quantized states of all nodes and branches,

J is the Jacobian matrix,

vi is the value for the ith voltage at time t,

v̇i is the time derivative of vi,

fi is the time derivative function of vi,

∆Qi is the quanta value for the ith node,

qi is the quantized value of vi,

q
i
is the lower quantum limit of vi,

q̄i is the upper quantum limit of vi,

q̂i is the quantized value for which v̇i = 0, and

q̃i is the approximate quantized value for which v̇i = 0.

Note that the dependence of v, u, and q on the current simulation time t is implicit, except where the
superscript last is used to denote quantities at the simulation time t−, or the time of the previous quantization
update.

qi =


q

i
, if fi (q,u)

(
q

i
− vi

)
≥ 0

q̄i, if fi (q,u)(q̄i − vi)≥ 0∧ fi (q,u)
(

q
i
− vi

)
< 0

q̃i, otherwise

, (14)

with the upper and lower quantized limits defined as
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q
i
=


qlast

i
−∆Qi, if vi −qlast

i
≤ 0

qlast
i

+∆Qi, if vi −qlast
i

≥ 2∆Qi

qlast
i

, otherwise

, (15)

q̄i = qlast
i

+2∆Qi, and (16)

q̃i =

{
q̄i − (1/Aii) · fi

(
q̄i
)
, if Jii ̸= 0

qlast
i , otherwise

, (17)

where q̄i is equal to qlast except for the ith component, where it is equal to q̄i and Jii is the iith component of
the Jacobian matrix evaluated at q̄i, .i.e.,

Jii =
∂ fi

∂vi

∣∣∣∣
q̄i,ulast

, (18)

and therefore, when Jii ̸= 0, setting qi = q̃i will force v̇i = 0 in the linear case. The calculation of q̃i is
achieved by taking q̂i equal to q̄i except for the ith component is q̂i.

We solve for q̂ (the point where fi = 0) as

q̂i = q̄i −
fi
(
q̄i,u

)
Jii

+
g
(
q̄i,u

)
−q

(
q̂i,u

)
Jii

, (19)

where g(x,u) = f (x,u)− Ji ·x, Jii is approximated by

Jii ≈
fi
(
q̄i,u

)
− fi

(
qi,u

)
q̄i −q

i

. (20)

4.5 QDL Simulation Procedure

The atom models are coupled via the topological connections as encoded in the LIM system port connection
incidence matrix A, as well as the controlled source matrices B, S, T and Z. These coupled models become
the Coupled DEVS System as described in (Zeigler 1999) and (Kofman 2004). The DEVS simulation
procedure that implements the Coupled DEVS simulation is described in the flow chart in Figure 3.
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t < tstop?

qstate
change?

flagged
for dint?

more
atoms?

set atom state and qstate to x0 
set atom time to t0 
set atom tnext to infinity 
set atom derivative to 0 

go to first atom 

update atom state  (dint func) 
update atom qstate  (Q func) 
update atom derivative (f func) 
update atom tnext (ta func) 

more
atoms?

go to next atom 

start simulation 

stop simulation 

save (time, qstate)
for atom output  

flag connected atoms
for external transition   

set simulation time t to min(tnext)
for tnext in all atoms   

go to next atom 

(atom initialization)

(internal update)

(simulation time advance)

t <= tnext?

go to first atom 

save (time, qstate)
for atom output  

(external update)

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No
Yes

go to next atom 

go to first atom 

go to next atom 

go to next atom 

update atom state  (dint func) 
update atom qstate  (Q func) 
update atom derivative (f func) 
update atom tnext (ta func) 

qstate
change?

more
atoms ?

Figure 3: QDL simulation procedure.
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5 SIMULATION EXAMPLES

We first illustrate the QDL method with a very simple example. A 2nd order system consisting of one node
and one branch is presented in Figure 4. The simulation results are shown in Figure 5 compared against the
implicit state space solution (dashed lines). The QDL results are piece-wise constant values. Note that the
quantum size ∆Q is different for the node voltage and the branch current. In general, ∆Q can be specific to
each atom.

Figure 4: 2nd order QDL system.

Figure 5: 2nd order QDL system simulation results.

5.1 Stiff LIM Grid Simulation

In order to test the capabilities of the QDL method with stiff systems, a dense grid was created with a very
wide range of time constants. This grid has 16 LIM nodes and 24 LIM branches (see Figure 6). Each
quadrant of the grid contains different levels of latency, controlled by setting the capacitance values for the
nodes within in the quadrants. The eigenvalues of the system range approximately from 10−3 seconds to
106 seconds, creating a stiffness ratio of approximately 109. The voltage at the corner nodes are used as
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representative states for analysis of the results of the simulation, and are conveniently named Node 1, Node
2, Node 3, and Node 4, corresponding to their quadrant.

 C = 10-3  C = 1

C = 103  C = 106

Node 1 Node 2

Node 4

Zone 1: Zone 2:

Zone 3:
Zone 4:

Node 3

Figure 6: Stiff LIM grid with four latency zones.

The simulation was run for 104 simulation seconds. The current injection at Node 1 is stepped from 0 to
1A at t = 0, and from 1A to 10A at t = tsim/2 to provide a perturbation to create a dynamic response. The
results are shown in Figure 7. Because the results from a simulation with such a large stiffness ratio are
difficult to visualize on one time scale, zoomed plots of the faster transients are included for corner Node
1, Node 2 and Node 3 (see Figure 8). Note that the dynamic response of Node 4 is too slow to warrant a
zoomed plot.

Included in each plot are two axes, a left axis for the voltage quantity, and a right axis for the update fre-
quency. The update frequency is the rate at which the asynchronous state updates occur in the simulation
for each atom. As expected and desired, the update frequencies are relatively high during the transients,
and very low or non-existent during the steady-state portions. Each plot’s legend shows the update fre-
quency histogram bin size in seconds. Note that these bin sizes vary with each plot as they were chosen for
readability.

An implicit state space solution as a benchmark was impractical to create for this example because of the
extreme stiffness and long simulation time of this simulation. The run-time of such a simulation would take
many hours or days to simulate on typical desktop hardware using an implicit state space solution with a
time step small enough to capture the fast dynamics. For example, a time step of λmin/10 would require the
solution of a 40-state system for 108 time steps. The QDL system, however, requires total updates on the
order of 105 for all states combined, and runs in less than 5 mins on a laptop computer as a single-threaded
application. Note that this is not an exhaustive performance or accuracy analysis. The quantification of
computational efficiency and error will need to be part of future work. Also, because an implicit state space
solution is impractical to perform on these types of the extremely stiff systems, a reasonable method of
bench-marking the performance and results will have to be determined that does not require running the full
simulation.



Hood and Dougal

Figure 7: Stiff grid corner node voltage dynamic response.

Figure 8: Stiff grid corner node voltage dynamic response (zoom to transient).
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6 CONCLUSION

A method for simulating the dynamics of very stiff electrical system models was presented, using the
QDEVS-based LIQSS formulation and the LIM modeling method. The combined method is called QDL,
and is shown to be efficient in simulating the dynamics of very network with a stiffness ratio of 109 and a
simulation time of 104 seconds. Future work should include the modeling realistic electrical networks that
include non-linear electrical machines and power converters with vastly different time constants in a uni-
fied simulation model. Detailed comparisons between the QDL method and traditional implicit state space
solution should be performed to quantify accuracy, stability and performance.
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