

1 Universidade Federal de Pernambuco, Centro de Informática

Caixa Postal 7851 50740-540 – Recife – PE – Brazil

+55 81 2126 8430

{raaf, prmm, nsr}@cin.ufpe.br

Performance Evaluation of CORBA Concurrency Control

Service Using Stochastic Petri Nets

Roberta A. A. Fagundes
l

Paulo R. M. Maciel
l

Nelson S. Rosa
l

Abstract. The interest in performance evaluation of middleware systems is increasing.

Measurement techniques are still predominant among those used to carry out

performance evaluation. However, performance models are currently being defined due

to their flexibility, precision and facilities to carry out capacity planning activities. This

paper presents stochastic Petri net models for performance evaluation of the CORBA

Concurrency Control Service (CCS), which mediates concurrent access to objects. In

order to validate the proposed models, CCS performance results obtained using those

models are then compared against ones obtained through actual measurements.

1 Introduction

Middleware is a class of software especially designed to enable the communication

between distributed applications, in such way that it hides, from application developers, the

complexity of underlying network mechanisms and the heterogeneity of environments where

the application runs [26]. Along with those two basic characteristics, middleware systems also

provide services, adding value to the communication. In a typical use of those services, a

client/server programmer should focus on business aspects and leave to the middleware

services the responsibility of treating with the complexity of security, transactional,

concurrency and fault tolerance aspects.

Unlike traditional performance areas such as computer network and database

management, performance evaluation of middleware systems is currently on an initial stage.

While initiatives such as TPC (Transaction Processing Council) [15] and network simulators

are widely known in their respective areas, middleware evaluation is currently defining basic

metrics, benchmarks and still almost solely adopting measurement as the unique performance

evaluation technique. In practical terms, most performance evaluation of middleware

concentrate on measuring and comparing the performance of existing products, and may be

summarised in three activities: to build an application that sends thousands of messages using

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

110 RITA • Volume XIV • Número 2 • 2007

the middleware, to measure the time taken by the middleware to carry the message from

sender to receiver, and average the measured time.

While measurement is an important and necessary technique, it is the

most time consuming of the three techniques (measurement, simulation, analytical modelling)

for performance evaluation, especially along with the case of being able to change

configurations and scenarios. In particular, middleware performance evaluation suffers of

proper difficulties such as complex instrumentation, reduced number of tools, great diversity

of operations and computation models, lack of a global clock, state and control. Furthermore,

as current middleware systems are black box (application developers do not see details of the

middleware), measurement refers to the execution time of coarse grain middleware

mechanisms and everything below it, i.e., the virtual machine (e.g., Java or C#), the operating

system (e.g., Windows or Linux) and network layers (e.g., TCP or UDP). Besides, while

performance of an existing system can be evaluated by measurements, such approach is not

possible during its design phases. In this case, one may resort to model based evaluation

techniques.

Many modelling formalisms have been used for performance evaluation of

communicating systems. Such modelling formalisms should provide a description of

performance aspects related to the modelled systems. Some modelling formalisms provide

graphical representation of systems such as Queuing networks and stochastic Petri nets [9, 5,

6, 2, 8, 7]. Petri nets may also be applied to verification and/or qualitative analysis of systems

properties, such as deadlock freedom, liveness and boundedness [2].

This paper concentrates on the definition of Petri net models used to performance

evaluation of the CORBA Concurrency Control Service (CCS). Stochastic Petri nets are a

family of performance models that naturally represents concurrency, synchronization and

resource sharing aspects. These models allow steady state and transient evaluation of systems

and such evaluation may be carried out either applying numerical methods or based on

stochastic simulation [4,5,6].

This paper is organized as follows: Section 2 introduces basic concepts of Petri nets

and CCS. Next, Section 3 presents the proposed Petri net models of CCS. Simulation results

along with comparison with measurements of OpenORB CCS are then presented in Section 4.

Section 5 presents related work to the proposed approach. Finally, Section 6 presents the

conclusions future work.

2 Basic Concepts

Prior to present the proposed Petri net models of the CCS, we introduce basic concepts

of CCS and both Petri nets. As the service being modelled is the CCS, it is initially presented

followed by the main definitions of Generalised Stochastic Petri Nets (GSPN) and

Deterministic Stochastic Petri Nets (DSPN).

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 111

2.1 CORBA Concurrency Control Service (CCS)

CORBA (Common Object Request Broker Architecture) [17] is an architecture

specifically designed to support the development of distributed applications in heterogeneous

environments. Essentially, it provides the communication infrastructure that allows objects to

make requests to remote ones in a transparent way, i.e., wherever the remote object is

executing, no matter which implementation language and operating system is being used.

ClientClient

Service1

ORB

Service2 Service3 CCS

Object
Implementation

Object
Implementation

Request

Reply

CORBA Common Services

Figure 1 – Simple Overview of CORBA Architecture

Figure 1 shows a simple overview of CORBA and how distributed applications are

built on it. A Client makes a request (invocation) to a remote object (Object Implementation)

that implements a service. After being processed, the object implementation sends back a

response to the client. The request passes through CORBA Common services and is forwarded

to the Object Implementation via the ORB (Object Request Broker). The ORB works as a

communication bus responsible for the transportation of the request from the client host to the

object implementation in a transparent way.

The CORBA Common Services (COS) includes several different services such as

concurrency, transaction, fault-tolerance, naming, trader, and so on. These services are usually

specified as a set of APIs described in IDL (Interface Description Language). In particular, the

Concurrency Control Service (CCS for short) [17] allows multiple clients to coordinate their

access to shared resources. Coordinating access to a resource means that when multiple,

concurrent clients access a single resource, any conflicting actions by the clients are reconciled

so that the resource remains in a consistent state.

CCS does not define what a resource is. It is up to the clients of the Concurrency

Control Service to define resources and to properly identify potentially conflicting uses of

those resources. In a typical use, an object would be a resource, and the object implementation

would use the concurrency control service to coordinate concurrent access to the object by

multiple clients [21].

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

112 RITA • Volume XIV • Número 2 • 2007

In CCS, the coordination of access to shared resources is carried out through the use of

locks, which work as permissions for a client to access a particular resource. The CCS

specification defines five lock modes: read, write, upgrade, intention read and intention write.

The user of CCS may acquire a lock in two different ways: on behalf of a transaction or on

behalf of the current thread. In the first way, the transaction service is responsible for releasing

the lock (transactional client), whilst in the second one the current threads (non-transactional

clients) do this. A user acquires a lock for a particular resource if the required mode does not

conflict with the lock mode of a concurrent user.

CCS is defined through four main interfaces: LockCoordinator, LockSet,

TransactionalLockSet and LockSetFactory. In particular, we are mainly interested in the

LockSet that is explicitly used by nontransactional clients and implicitly by transactional

ones. This interface provides five operations, as defined in the following OMG IDL

specification:

Interface LockSet{

 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode) raises(LockNotHeld);

 void change_mode(in lock_mode held_mode, in

 lock_mode new_mode)

raises(LockNotHeld);

 LockCoordinator get_coordinator(in CosTransactions::Coordinator

which);};

The operation lock acquires a lock in specified mode. In the case that the lock mode

is incompatible with one of the concurrent clients the operation will block the current thread

until the lock is acquired. The operation try_lock is used to acquire a lock and return

“false” if the required lock mode is incompatible with one hold by a concurrent client.

2.2 Generalised Stochastic Petri Nets (GSPN) and Deterministic Stochastic Petri Nets

(DSPN)

Modern computer, production and communication systems process complex workloads

with random service demands. The most direct method for performance evaluation is based on

actual measurement of the system under study. Nevertheless, during design, the system is not

yet available and performance still needs to be predicted [1,2,3]. Most performance evaluation

approaches are based on discrete-event simulation system models. Analytical models can be

broadly classified into non-state and state space models, where the most commonly used state

space models are Markov chains. In order to determine steady-state probabilities of a finite

Markov chain, at least three different approaches for solution of the linear system (Interval

Inter Quartile) IIQ = 0 are commonly considered: direct and iterative numerical methods, and

a technique that yields closed form results. When real world problems are studied, Markov

chains tend to become very large. Therefore it is attractive to be able to specify such systems

in a compact way avoiding error-prone and tedious creation of models, and allowing designers

to focus more on the system being modelled than on low-level modelling details. Hence,

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 113

separation of high-level model description and low-level computational models and its

automatic generation are of great importance. GSPN (Generalised Stochastic Petri Net) is a

prominent member of such generation models.

Petri nets are a family of formal specification techniques that allow for a graphical,

mathematical representation and have powerful methods, which enable designers to perform

qualitative and quantitative analysis [3]. Place/transition Petri nets are used to model a logical

point of view of the systems, however no formal attention is given to temporal relations and

constraints [1,2,3,4,5]. The idea of associating random time delay was first explored by Natkin

[6] and Molloy [4] and this was the start of the emergence of Stochastic Petri Nets and their

extensions. GSPN [1] is one of the most extensively used classes of stochastic Petri nets.

GSPN are obtained by allowing transitions to belong to two different classes: immediate and

exponential transitions.

Many reasons can be given for modelling a system, such as: existing systems are

modelled for a better understanding, and analysis of deficiencies, such as bottlenecks, or for

upgrading studies; and models are built during design of future systems in order to check if

requirements are met [3,5]. For each case, different levels of details are considered. When

designing a system, few details are known in advance, models tend to be more abstract and

then analytical methods are more appropriate.

High-level models of systems are the first step to be accomplished. Such models are

built considering information already available in this stage of design or based on previous

modelling knowledge. Conceptual validation of such models is commonly accomplished as an

iterative process based on step-wise refinement. After gaining confidence in the high-level

model, low-level models are generated and metrics are calculated. Generating low-level

models directly is often out of question due to their size and error-prone process of creating

them by hand. High-level models allow a compact representation of low-level models to be

analysed. Several high-level specification techniques have been suggested, among them GSPN

is one of the most prominent. It is assumed that the reader is familiar with Petri net notation

and graphical representation, nevertheless the structure as well as its firing semantics are

informally described in the following paragraphs.

A GSPN is defined by a set of places, a set of transitions, relations describing pre-

conditions, post-conditions, and inhibition conditions; and a mapping from the set of places to

the natural numbers describing the model's state. The set of places represents the set of

resources, local states and system variables. The set of transitions represents the set of actions.

This set is divided into two subsets: the set of immediate transitions that depicts a set of

irrelevant actions under the performance point of view; and the subset of timed transitions.

Besides, two other functions are taken into account for representing timing and priorities. The

timing function associates to each timed transition a non-negative real number, depicting the

respective exponential transition delay (or rate). The priority function associates to each

immediate transition a natural number that represents the respective transition priority level.

Transitions are fired under interleaving firing semantics, a common semantics adopted even in

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

114 RITA • Volume XIV • Número 2 • 2007

the untimed place/transition model. However, as defined, immediate transitions have higher

priority than those timed transitions.

From a given bounded, live and reversible GSPN, a reachability graph is generated

containing vanishing and tangible markings. This reachability graph is a semi-markovian

process and can be analysed identifying an embedded Markov chain that describes transitions

from state to state of the process. Steady-state and transient analysis are carried out on such

models. Another possibility is to simulate the GSPN model in order to obtain steady state or

transient measures.

In many modelling situations the adoption of exponential distribution may be adequate.

Nevertheless, this assumption may be too restrictive for many real life cases. Therefore, over

the last years, significant efforts have been devoted to studying analysis techniques for non-

markovian stochastic Petri nets in which the exponential assumptions are partially not

considered [9]. Among those considered methods for treating with timed transitions with more

general distribution functions, methods based on phase approximation have been considered

[11, 10]. One of the most commonly used phase approximation class is based on a mixture of

Erlang and hyper-exponential distributions. Such an approach has been applied giving good

fits to some commonly occurring distributions such as Weibul, deterministic, lognormal and

uniform as well as empirical distributions [1,2, 29,30]. For instance, an Erlangian distribution

of γ order and parameter λ consists of γ exponential transitions in series each one with

parameter λ.

Deterministic and stochastic Petri nets (DSPN) [3] is an extension GSPN. DSPN allow

the association of a timed transition either with a deterministic or an exponentially distributed

firing delay. Hence, DSPN are well suited to represent system features such as time-outs,

propagation delays or processor rebooting times which are naturally associated with constant

delays. Early applications of DSPN include performance modelling of an Ethernet bus local

area network [7] and a fault tolerant clock synchronization system [1].

3 Petri Net Models of CCS

This section describes the stochastic Petri Net model of the CCS. Actually, three

models have been derived from a general model. Each model takes into account specific

statistics obtained from data measured considering specific basic components (lock and unlock

operations). These models are quite similar in terms of their structures. Therefore, a first

model is described in details and the other two ones are presented where they differ from the

first.

In order to define and evaluate the proposed Petri net models, we have adopted a

methodology composed by ten phases that goes from system understanding to the presentation

of the evaluation results. Hereafter, this methodology is briefly depicted:

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 115

Phase 1: this phase consists of understanding the problem (system) to be evaluated, its

interface with other systems, the respective criteria that should represent the system

performance, and highlighting the system components where the respective metrics should be

obtained as well as performance of the representative components.

Phase 2: an abstract performance model is generated in this phase. In this model,

timing information related to system components are not yet expressed, that is, those

respective timed transitions do not define any specific time distribution – they are “generic”

timed transitions.

Phase 3: the measuring process related to basic system components should be carried

out according to a specified protocol of the measuring process [29].

Phase 4: the set of data collected in the previous phase is considered for obtaining a set

of statistics (mean, standard deviation, variance, coefficient of variation, etc.) where outliers

may or may not be discarded.

Phase 5: in particular, the first and second moment matching process has been adopted

for representing empiric distributions according to the respective values related to coefficient

of variations [8].

Phase 6: after moment matching, “generic” timed transitions are transformed into

subnets representing hyper-exponential, hypo-exponential and Erlang distributions or single

exponential or deterministic transitions. In this phase, the set of performance criteria specified

in the initial phase should be stated in terms of probabilistic formulas representing

throughputs, capacities, average times, availabilities etc. The products of this phase are,

therefore, refined models.

Phase 7: a refined model should be validated by taking into account a set of specific

scenarios in which real measures are obtained from the system under evaluation and compared

with the respective results provided by the model evaluation.

Phase 8: in order to keep complexity under control, depending on the potential state

space size and model structure, the refined model might be disaggregated into smaller sub-

models, individually evaluated, and then aggregated back into a higher-level model that

probably generates a state space size smaller than the original refined model [12]. However,

this task should only be considered if the evaluation team, for practical reasons, faces

problems in terms of memory space or evaluation time.

Phase 9: after generating the refined models, the evaluation method should be chosen

(steady state or transient analysis/simulation) according to the performance criteria/metrics to

be evaluated and the model’s structure. The choice of these metrics is made according to

specific criteria that represent system’s performance. In order to generating the refined model,

the abstract model is refined according to the specific values of the statistics obtained

previously (defining the distribution type to be considered). The refined models are those

taken into account in the evaluation phase.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

116 RITA • Volume XIV • Número 2 • 2007

Phase 10: after carrying out the evaluation method of choice, the respective results

should be carefully analyzed, interpreted, highlighting bottlenecks, and actions might be

recommended for the system’s tuning.

3.1 Refined Models

Considering the phases defined in the preview section, a set of the middleware

components and their interactions were obtained for generation of the abstract model. In order

to derive the models (generated from the abstract model), statistics (mean and standard

deviation) related to measurements associated with lock and unlock operations had to be

obtained. For measuring the basic data that are considered for obtaining the refined models,

HRTimer implemented for ITimer interface of JAVA has been adopted, since it provides time

information milliseconds. Four methods have been used for carrying out the measuring of

Lock and Unlock operations. The method start() starts counting the time for a new time

interval and the stop() method ends this counting. The method getduration() returns the

duration of the time intervals that elapsed between the last start() and stop() calls. Finally,

the method reset() can be called from any state and will reset the timer instance back to the

'ready ' state.

Considering the phases defined in the preview section, the middleware components and

their interactions were obtained for generation of the abstract model. In order to derive the

models (generated from the abstract model), statistics (mean and standard deviation) related to

measurements associated with lock and unlock operations (see Section 2.1) have to be

obtained.

In order to measure the specific performance information related to the basic system’s

operations, a controlled environment has been considered. This environment consists of:

Pentium III 800 MHz, with HD of 20 GB (5400 RPM Ultra-ATA/100), and 190 MB of RAM;

Windows 2000 Professional (version 5.00.2195 - Service Pack 4); Development environment:

Java 2 SDK, Standard Edition, version 1.4.2_02; and OpenORB, version 1.4.0 BETA2

Release [8].

The experiments were carried out using CORBA/OpenORB [8] concurrency server, the

name server and the clients applications were all executing in the platform described

previously. We measured the time of solicitation and answer of the operations lock and

unlock in the read and write modes. We used as unit of time the millisecond (ms) and a

sample of size 12.000, but the 2000 first samples were discarded. With the data, we computed

the measures of central trend (mean, median, mode) and measures of dispersion (variation

coefficient, standard deviation, variance). However, since this work considers first and second

moment matching for deriving the refined models, only mean and standard deviation are

presented.

These basic measurements registered the respective time information for lock and

unlock operations. For the lock creation, the mean and the standard deviation obtained were

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 117

0.012080 ms and 0.024392 ms, respectively. For the unlock operation, the mean and

standard deviation were 0.011185 ms and 0.045813 ms, respectively. If outliers are not taken

into account the mean and the respective standard deviation, for the lock operation, were

0.011676 ms and 0.000806 ms, and, for unlock operation, 0.010131 ms and 0.000767 ms.

Considering these statistics, the refine models were generated. The first refined model

takes into account only the mean values obtained for lock and unlock operations; the

standard deviations are not considered. The other two models, on the other hand, consider both

the mean and the standard deviation. The statistics generated from rate measured for lock and

unlock operations consists of 10.000 considered measurements. However, for moment

matching, outliers have been removed, hence 1140 measures have not been considered for the

lock operation and 1123 for the unlock operation. The second model that those transitions

representing lock and unlock operations are depicted by subnets describing an Erlang

distribution, since the statistics obtained show smaller variability than exponential

distribution, and according to the first and second moment matching, the Erlang distribution,

is a better approximation. The third models represents the lock and unlock operations by

deterministic transitions, since the very small variability (standard deviation) suggest it as an

interesting representation.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

118 RITA • Volume XIV • Número 2 • 2007

Figure 2 – Model Exponential Transition

Figure 2 represents the CCS specifying the operations of lock (New_Lock) and

unlock (Unlock) in the reading mode. For a reading operation to occur, one must make a

reading request and have it granted, to be able to read. In the described modelling, the client

makes a request to a variable rate (TX_Request), this request solicitation can be to read

(T_Read) or write(T_Write), where a choice probability exists that can vary from 0% to

100%. The transitions T1 (Prob_T1) and T2 (Prob_T2) can be associated to probabilistic

association to each one depending on the initial marking and the amount of clients who can

lock. After getting the lock, the client is qualified to execute this operation in the server at a

rate of reading request variable (TX_Read) and will make a certain number of consecutive

readings (Number_Client_Reading) predefined initially as three. In order to perform

these readings, there is a variable rate to serve (TX_Server), the client is served at the

variable rate.

Finally, the operation of unlock (Unlock) has a probability varying from 0% to

100%. If the option is to continue with the lock, a new reading operation is made without

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 119

taking into account the lock creation. In this model, an exponential transition is adopted to

represent the operations for creating and releasing the lock.

Comparing their respective results with those obtained by measuring the real system

has validated the proposed models. In the scenario considered, the average time between locks

was calculated varying the amount of clients, and client requests set at a predefined rate of

1/6.7333 per second, the reading mode probability set to 1 (which means that only reading will

occur), the lock creation rate set to 1/0.0117469, the server service rate set as 0.5 per

millisecond, reading request rate specified as 0, since we will not read any data, but only pass

through the server and then release the lock (Unlock) at a rate of 1/0.00951843 per

millisecond.

Figure 2.a- Average Time between Locks (TimeNET) Figure 2.b- Average Time between

Locks (CORBA)

Considering 10 clients, the average time between locks obtained through the model

with deterministic transition taking into account stationary analysis in Figure 2.a, was around

6.8 milliseconds. And measuring the CORBA application, using the OpenORB in Figure 2.b,

it was around 5.2 milliseconds. It is observed that the average time between locks decrease to

the measure that we increase the number of client, arriving at one determined point that tends

to stabilize, in Figure 2.a in 6.8 ms and Figure 2.b in 5.2 ms. With this, it is perceived that the

bottlenecks of this scenario is the request rate, therefore, if to increase this rate, we perceive

certain variability in the average time between locks. With these measures, it is verified that

the reproduced model presented quite similar results.

The initial statistics indicate that the generic transition should be substituted by an

Erlang distribution of 257 phases for the New_Lock transition and 157 phases for the Unlock

transition. The large number of phases is associated with the coefficient of variation related to

time duration of these operations. Such large number of phases, depending on the models’

structure, makes the analysis process (state space generation) hard to be carried out. Therefore,

in order to validate the proposed models, we now faced to alternatives: validate it by

simulating the proposed GSPN model or by analyzing (numerical analysis) the respective

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

120 RITA • Volume XIV • Número 2 • 2007

model taking into account a smaller number of phase than those recommended by the moment

matching process, if obviously, it does not significantly affects the considered metrics. We

have adopted the numerical analysis for validating the model. The proposed model has been

analyze considering Erlang subnets with 4, 6 and 8 phases, since it has been observed that

after that number of phase (8), the respective results were no significantly affected. The

average time between requests of locks was around 6.8 milliseconds, presented in Figure 3.

Figure 3 – Average Time between lock (Erlang)

The first refined model (obtained from the abstract model) describes each operation by

exponential transition (first moment matching). This models as well the followings (abstract

and other refined models) are composed by three subnets: Client, Middleware and server.

Figure 2 depicts these models, where each subnet has been delimited by dashed-lines.

The subnet Client is composed by a place named Client_Ready, where its initial

marking represents number of clients to be considered for evaluation. The transition Request

represents client’s request rate for a given service. The two immediate transitions, T_Write

and T_Read, are considered for specifying reading and writing operations, associated to a

given load. The weights attached to these transitions allow defining several load scenarios.

The subnet representing the middleware’s concurrency control service has place called

Starting_Middleware that represents the number of clients waiting to get a lock.

Whenever a client request a reading operation, a token is stored in place

Waiting_Request. If the client already has a lock (place Has_Lock marked), the

transition T2 is immediately fired as soon as a token arrives in place Message_Arrived.

However, if the client does not have a lock, one is created. The transition New_Lock depicts

the lock creation (the time associated to this transition represents time demanded for creating a

lock) and the place Lock_Created represents the lock creation. Therefore, a token in the

place Waiting_Request and another in the place Lock_Created allows the transition

T3 firing. The transition Unlock models the reading (the time associated to this transition

depicts the respective releasing time).

Since, this work focus on reading locks, the writing operation has been coarsely

represented, although precisely expressing the concurrency mechanism between reading and

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 121

writing operations. The time related to the whole writing operation is attached to transition

Write_Lock. The weights of the arcs connecting the place Write_Lock and place P6

assures mutual exclusion between reading and writing operations. The subnet Server is

composed by the Server_Ready place in which the associated the amount of clients that

can be simultaneously served. The exponential transition Result_Data represents the

service execution (the time attached to this transition represents the service time). The

Starting_Server place represents the number of clients being served.

Figure 2, the rate associated to T1 is Prob_T1 = {(Cli_Capacity -

#Has_Lock) / Cli_Capacity}, thus the probability of firing T1 depends on the

number of the tokens in places Client_Ready and Has_Lock. Considering this weight

expression, the probability o firing transition T1 (that is part of the lock creation) increases as

number of the tokens in place Has_Lock decreases. On the other hand, the probability firing

transition T2 increases as the number of tokens in place Has_Lock increases. This is

represented by the probability expression attached to transition T2 (Prob_T2 =

{#Has_Lock / Cli_Capcity}). When every client has a lock, it does not make reuse

creating a new lock, this is correctly expressed by the probability expression attached to

transition T1(it is evaluated to 0). This causes a confusing situation, since a structural choice

is represented, but no probabilistic choice is allowed. Therefore, in order to avoid such a

scenario, a guard function has been attached to the transition T1 (#Has_Lock <

Cli_Capacity). This guard function disables T1, whenever the number of locks matches

the number of clients.

It is important to stress that the weights associate to transitions T_Write and

T_Read allow expressing several scenario thing into account alternative loads in terms of

reading and writing operations. The time associated to transitions New_Lock and Unlock

have been measured according to the process described in the beginning of this section.

Several extended conflict sets (ECS) have been defined in order to avoid confusion [6]. The

priorities associated to the immediate transitions are depicted in Table 1.

Table 1. Extend Conflict Set - (ECS)

The Figure 4 shows the second derived model, in which the lock and unlock operations

are rep-resented by Erlang sub-nets, that is the transitions New_Lock and Unlock been

substituted by respective Erlang nets. The time associated to transitions New_Lock and

Unlock are 0.011740533 ms, 0.009517518 ms, respectively. Besides, these ECSs described

earlier, anew ECS is considered: ECS={r1,r2,r1_un,r2_un}, priority=1.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

122 RITA • Volume XIV • Número 2 • 2007

Figure 4 –

Model Subnet Erlang

Due to space restriction, the third model in which lock and model operations are

represented by deterministic transitions, is not presented in this work, since it has the same

structure of the net depicted in Figure 2. The only difference is that the transition New_Lock

and Unlock are specified as deterministic transitions the time associated to these transitions

are 0.011676 ms and 0.0100131, respectively.

4 Evaluation

In order to evaluate the adequacy of applying a given evaluation technique (stationary

simulation and analysis) to the model, a parameter (number of clients) was varied to verify the

possibility of using each respective techniques. It is important to say that stationary analysis

can become inadequate, due to the model’s structure and availed the memory of machine in

use.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 123

The structure of the obtained model does not disable the use of the analysis. However,

the number of clients can be a restriction for the application of this technique, given the

available memory of the used machine. The configuration of the machine used for evaluation

was: processor Athlon XP 2.0 MHz, HD of 40 GB and 528 MB of RAM. With the operational

system Linux Gnome distribution version 2.6, the Timenet tool version 3.0[10] and the

Microsoft Excel of the package of Office 2000. It was observed that, for seven or more clients,

the memory of the machine was insufficient for the storage of the infinitesimal generating

matrix.

Therefore, a stationary simulation was adopted as the chosen technique in this work.

Using a confidence interval of 95%, the minimum number of firings for each 50 transitions

and a relative error of 10%. In the presented experiments, the constant and variable parameters

referring to each scenario have been defined. Finally, we present the interpretation of the

results.

Next, we define two scenarios which have been simulated in the TimeNET [10]. In

these scenarios some values are constant and have been obtained by measurement as described

earlier. These values are the service request rate (1/6.733348 ms-1), associated to the

transition Request, the lock creation rate (1/0.0117469 ms-1), attached to the transition

New_Lock, and the lock release arte, associated the transition Unlock (1/0.00951843 ms-1).

Scenario 1 concerns the evaluating the middleware and system throughputs according

to the number of clients. Some assumptions have been made in order to evaluating the models.

It has been assumed that the respective load executes 90% of reading operations. This was set

(in the model) by assigning the respective transition weights to transitions TX_Reading and

TX_Writing. It is adopted that each client makes three consecutive readings. These readings

are represented by the Number_Client_Reading variable, set as 3, which defines the

weight of the arcs of exit from the T8 transition to place P6, from the place Result to

transition End.

It is assumed that the middleware can treat with 1000 simultaneous clients at most. In

fact, a greater number of clients could be used. The number adopted in this scenario does not

present a restriction for the performance of the system. The maximum number of clients is

represented by the marking of the Middlware_Ready place (defined as 1000, indicating

that at most 1000 locks can be simultaneously created). The probability of choice between

releasing and holding the lock is assigned to the transitions T5 and T6. T5 represents the lock,

defined as 10% and T6 the release of the lock, defined as 90%.

Still in this scenario, it is adopted that the read request rate, assigned to transition T7 is

equal to the rate of the server, attached to the TX_Server transition and defined as (0.5 ms
-

1

). This means that, at each 2 millisecond a new reading request takes place and 2 milliseconds

later the operation is finished.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

124 RITA • Volume XIV • Número 2 • 2007

The server has a capacity of service, assigned to the place Server_Ready, defined as

10, indicating that only 10 clients can be simultaneously served. It is assumed that the average

writing time is 2 ms, following an exponential distribution function (attributed to the

Write_Lock). The values of creation and releasing of the lock are accumulated in a unique

transition (exponential).

With this, the system of throughput (P{#Starting_Server>0}*TX_Server) and the

middleware throughput (P{#Starting_Middleware>0}*TX_Lock) are calculated, where the

first indicates the number of readings completed per time unit and the second indicates the

number of locks created per time unit.

In the second scenario, this experiment consists in the evaluation system throughput

and middleware throughput varying the reading probability from 10% to 90%. The scenario

described below presents only the values modified in relation to the previously defined

scenario. In this scenario some values are constant and have been obtained in the measurement

phase. The number of clients, assigned to the place Client_Ready, is defined as 50. The

server has a capacity of service, attached to the place Server_ Capacity, defined as 15,

indicating that only 15 clients can simultaneously be served.

6.1 Results

The experiments were carried out simulation with the TimeNET[10] tool. The

preceding section presented two GSPN models and one DSPN model for the CORBA

concurrency service. The first GSPN model (Figure 2) uses exponential transitions and the

second one uses an Erlang subnet (Figure 4). The DSPN model uses deterministic transitions.

The experiments were carried out using these models for analyzing the performance

behaviour of CCS CORBA under different conditions and components parameterization. The

chosen evaluation method was stationary simulation (steady-state). The metrics calculated

were the system throughput and the middleware throughput.

----- Expo Deter

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 125

Figure 6 – System throughput versus Number of the Clients

The experiment provides performance results for the first scenario defined. The first

evaluated measure is the system throughput varying the number of clients. The adopted

models were the exponential model (Figure 4, first model) and the deterministic transition

(third model).

The results obtained related to the deterministic model is plotted as continuous line as

well as the results related to the exponential model are represented by dashed lines. The

obtained results are presented in Figure 6, and one should observe that the system throughput

increases as the number of clients increases. Considering 7 clients the throughput of the

system is around 0.4 per millisecond, i.e., at each 2.5 ms a reading is completed.

The curves, presented in Figure 6, show that the system throughput increases as the

number of clients also increases. The results obtained from deterministic transition model vary

from 0.356881(2 clients) to 0.443739(1000 clients). Considering the exponential transition

model, the system throughput varies from 0.368352 (2 clients) to 0.427738 (1000 clients). It

has been noticed that the system throughput increases and that it tends to stabilize, hence there

might bottlenecks such as reading re-quest rate and/or the capacity sever.

System Throughput

Number of Clients

----- Expo Deter

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

126 RITA • Volume XIV • Número 2 • 2007

Figure 7 – Middleware throughput versus Number of the Clients

The second evaluated measure is the middleware throughput varying the number of

clients. The adopted models were the exponential model (Figure 4, first model) and the

deterministic transition (third model).

The obtained results are presented in Figure 7, and one should observe that the

middleware throughput increases as the number of clients increases. Considering 6 clients the

throughput of the system is around 0.1 per millisecond, i.e., at each 10 ms a lock is created.

The curves, presented in Figure 7, show that the middleware throughput increases as

the number of clients also increases. The results obtained from deterministic transition model

vary from 0.0863889(2 clients) to 0.144604 (1000 clients). Considering the exponential

transition model, the middleware throughput varies from 0.0803402(2 clients) to

0.127753(1000 clients). Therefore, is has also been noticed that the middleware throughput

approaches a steady value.

 Middleware throughput (ms-1)

Number of Clients

----- Expo Deter

 System throughput (ms-1)

Reading Rate (%)

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 127

Figure 8 – System Throughput versus Reading Rate

This experiment provides the performance results, considering the second proposed

scenario. In Figure 8 it is observed that the system throughput increase with rate reading. The

number of clients requesting a reading and the number of clients who perform a complete

reading also increase.

In this graph the system throughput provided by using deterministic model varies from

0.0471776 (10% clients) to 0.392984(90%) and using exponential model varies from

0.0473628 (10%) to 0.390049 (90%). With these results, it is noticed that in the two models

the throughput of the system linearly increases. If show that, for there considered values, the

server capacity does not impere and performance constraint.

Figure 9 – Middleware Throughput versus Reading Rate

In Figure 9 it is observed that the middleware throughput tends to increase with the

growth of the probability of the reading rate. Therefore, when the reading probability is low,

fewer requests are made to the middleware. As a consequence, less lock is created.

In this graph the calculation of the middleware throughput deterministic model varies

from 0.0134788 (10%) to 0.120651 (90%) and the result related to the exponential model

varies from 0.0131042 (10%) to 0.116607 (90%). With these results, it is observed that in the

two used models, the throughput of middleware increases. Hence, according to the observed

results, one may concludes that for the adopted TX_Request (obtained from the considered

application) does not flood the middleware.

----- Expo Deter

 Middlewarethroughput (ms-1)

Reading Rate (%)

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

128 RITA • Volume XIV • Número 2 • 2007

5 Related Work

Related works on modelling and analysis of distributed systems have received

considerable attention during the last two decades. A review of technologies involved in

Transaction Processing (TP) with a variety of performance models for major building blocks

of a TP system were given in [4]. A number of product-form Queuing Network (QN) models

for delay analysis were presented in [11] for application servers, disk subsystems, and

networks. Computationally efficient algorithms were proposed for product form QN models

using Mean Value Analysis. However, these models presented deficiencies in handling the

interaction of various processes such as simultaneous possession of more than one resource. In

[25] the QN are used for describing client/server system using CORBA as a middleware and

the response times estimated from the model are compared to the measured response times for

a growing number of clients, in order to assess the accuracy of the model and the values of the

parameters in the model. This model can then be used for designing a distributed application,

before the entire system is installed or even fully implemented.

Related works on demultiplexing focuse largely on the lower layers of the protocol

stack (i.e., the transport layer and below) as opposed to the CORBA middleware. For instance,

[1, 2, 3] study demultiplexing issues in communication systems and show how layered

demultiplexing is not suitable for applications that require real-time quality of service

guarantees. In [12] presents two contributions to the study of demultiplexing for real-time

CORBA end systems. First, an empirical study of four CORBA request demultiplexing

strategies (linear search, perfect hashing, dynamic hashing, and active demultiplexing) is

presented for a range of target objects and operations. Second, describe how are using the

perfect hashing and active demultiplexing strategies is described aiming at developing a high

performance, real-time ORB called TAO [18]. An important class of applications (such as

avionics, virtual reality, and telecommunication systems) require scalable, low latency

communication. Our earlier work [5, 7] shows why latency sensitive applications that utilize

many servants and large interfaces are not yet supported efficiently by contemporary CORBA

implementations due to demultiplexing overhead, presentation layer conversions, data

copying, and many layers of virtual method calls. On low speed networks this overhead is

often masked. On high-speed networks, this overhead becomes a significant factor limiting

communication performance and ultimately limiting adoption of CORBA by developers. The

results presented in this paper compare four demultiplexing strategies. The object and

operation lookup used by these strategies are based on linear-search, perfect hashing, dynamic

hashing, and de-layered active demultiplexing. Results reveal that the de-layered active

demultiplexing strategy provides the lowest latency and most predictability amongst the three

strategies studied. We have currently implemented the de-layered active demultiplexing

strategy in TAO, which is our high performance, real-time ORB [18].

Related work on modelling and analysis using Petri nets can be used for the event

service and notification service of the CORBA. The Event service is the earliest CORBA

solution to the message queue model of communication in distributed systems. Typical

implementations however suffer from the lack of event delivery guarantees. The loss of

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 129

messages is aggravated in the presence of burstiness in the input to the Event service, and

occurrences of isolated bursts of traffic could also have serious effects. In this

paper we develop stochastic reward net (SRN) models that can aid in the study and

configuration of the Event service to conform to design

specifications. To capture burstiness in the input, Markov modulated Poisson process

(MMPP) is used as the input source. Erlang distributed event consumption times are used in

the models to accommodate more general distributions and a wider range of variances. The

models also take into consideration the FIFO discard policy adopted in many Event service

implementations. The applicability of the models to the CORBA Notification service is also

briefly discussed. In [9] studied the most common implementation of the CORBA COS Event

service using stochastic reward net (SRN) models. The models can aid in configuring the

Event service by

determining operating ranges that satisfy design specifications. The models were used

to study the effect of Poisson arrivals as well as bursty and correlated arrivals by means of an

MMPP event source model. We also demonstrated the use of the models to determine the

effect of an isolated burst in input. A model to study the scheme of state resynchronization

between suppliers and consumers was also developed. The Event service specification does

not enforce event delivery guarantees and does not specify any QoS settings.

In [22] the Notification service provides standards based QoS settings to messaging in

CORBA applications. Our models can be used to configure a system for minimum event loss

as in the case of the Event service, as well as guide the choice of the quality of service as in

the case of the Notification service. The Notification Service provides several configurable

quality of service (QoS) and administrative settings that deal with issues such as reliability,

event (message) delivery order and discard policies. Unlike in conventional queuing systems,

some Notification Service QoS configurations can lead to discards from within the internal

queues, requiring careful analysis and configuration if such discards are to be avoided or

minimized. This paper presents stochastic models (based on continuous time Markov chains

and queuing theory) for analyzing the Notification Service delivery and discard policies in

detail. The CORBA Notification Service aims to provide a very flexible messaging framework

for CORBA applications. The Notification Service QoS properties that can be chosen include

event delivery and discard policies, and the maximum queue lengths. Apart from these choices

the effect of a particular event arrival rate needs to be determined in order to regulate the

suppliers, if necessary. In this work we developed stochastic models based on continuous time

Markov chains (CTMC) and queuing theory to analyze the performance of the CORBA

Notification Service under various combinations of these policies. The utility of the models

was illustrated by studying the effect of event arrival rate on the measures of interest for

delivery and discard policies based on FIFO, LIFO, and priority that the Notification Service

allows. The applicability of the models to evaluate deadline violations was also outlined. The

models can also aid in the assignment of priorities to important events when priority based

delivery and/or discard policies are used. The models were also shown to be useful to study

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

130 RITA • Volume XIV • Número 2 • 2007

the effect of varying the maximum queue length on the computed measures. Thus the models

can be considered to verify that design specifications are met, as well guide the choice of

quality of service settings.

6 Conclusion and Future Work

Middleware has a large diversity of features such as price, complexity and

performance. For each target application, different aspects are more important than others. The

process of choosing the correct middleware technology is directly related to deciding which

qualities have more significance for the applications. However, a common requirement for

almost all applications is the performance behaviour. Although other techniques may be

applied to evaluate middleware's performance, it is mainly based on measurements that

consider test environments. Performance of an existing system can obviously be evaluated by

measurements, but such an approach is not possible during its design phases or even if one

intends to evaluate different scenarios in order to tune systems performance. In such cases,

one may resort to model-based evaluation techniques. Thus, the search for simulation and

analytical models that allow complex system performance behaviour reproduction has

received significant attention by the distributed systems scientific community.

This paper proposed two GSPN models and one DSPN model for CORBA CCS.

Performance evaluation of these models was carried out through steady-state simulation and

the models accuracy has been confirmed by comparisons with measurements performed in a

real test measurement environment. The GSPN model demonstrated to be very accurate and

succeeded in catching the main performance characteristics of a real CCS. Moreover, some

performance analysis could be extended to verify the behaviour of some metrics while

changing different factors and their respective levels. In general, results presented the ability

of modelling in evaluating CORBA Concurrency Service using GSPN and DSPN.

The CCS GSPN-based model is suitable to possible extensions, some of which are

currently in progress, for instance, the introduction of operation upgrade, change_mode in the

sender or receiver side as well as performance evaluation of CORBA Concurrency Service

taking into account phase approximation distributions. Other work in progress also considers

evaluating specific CORBA Transaction Service.

References

[1] Marsan, G Chiola. On Petri Nets with Deterministic and Exponentially Distributed

Firing Times. Advances in Petri Nets, vol 266, Lecture Notes in Computer Science, Springer

Verlag, Edited by G.Rozenberg, pp 132-145. 1987.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

RITA • Volume XIV • Número 2 • 2007 131

[2] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceeding of The

IEEE, 1989.

[3] C. Lindemann. Performance Modelling with Deterministic and Stochastic Petri

Nets. John Wiley and Sons, 1998.

[4] M. K. Molloy. On the Integration of Delay and Throughput Measures in Distributed

Processing Models. PhD. Thesis, UCLA, Los Angeles, CA, 1981.

[5] R. German. Performance Analysis of Communicating Systems - Modeling with

Non-Markovian Stochastic Petri Nets. John Wiley and Sons, 2000.

[6] G. Balbo. Introduction to Stochastic Petri Nets. Lectures on Formal Methods and

Performance Analysis, Springer Verlag, 2001.

[7] G Bolch, S. Greiner, H. de Meer, K. Trivedi. Queueing Networks and Markov

Chains - Modeling and Performance Evaluation with Computer Science Applications. John

Wiley and Sons, 1998.

[8] A.A.Desrochers, R.Y.Al-Jaar Applications of Petri Nets in Manufacturing Systems.

IEEE Press. 1995.

[9] S. Ramani, K. Trivedi, B. Dasrathy Performance Analysis of the CORBA Event

Service Using Stochastic Reward Nets. 19th IEEE Symposium on Reliable Distributed

Systems, Nurberg, Germany, October, 2000.

[10] Aniruddha Gokhale and Douglas Schimdt. The Performance of the CORBA

Dynamic Invocation Interface and Dynamic Skeleton Interface over High-Speed ATM

Networks. In GLOBECOM, volume 1, pages 18-22, November 1996.

[11] H. Ammar, S. Islam. Time Scale Decomposition of Class of Generalized

Stochastic Petri Net Models. IEEE Transaction on Software Engineering. Vol 15, no. 6, June,

1989.

[12] Aniruddha Gokhale and Douglas Schimdt. Evaluating the Performance of

Demultiplexing Strategies for Real-time CORBA. In GLOBECOM'97, volume 3, pages 1729-

1734, Phoenix, Arizona, USA, November, 1997.

[13] Sun Microsystems Inc. JavaTM Transaction Service Speci_cation, December

1999.

[14] Matjaz B. Juric, Ivan Rozman, and Simom Nash. Java 2 Distributed Object

Middleware Performance Analysis and Optimization. ACM SIGPLAN Notices, 2000.

[15] Te-Kai Liu, Amir Behroozi, and Santoshi Kumaran. A Performance Model for a

Business Process Integration Mid-dleware. In IEEE International Conference on E-Commerce,

pages 191-198, June 2003.

Performance Evaluation of CORBA Concurrency Control Service using Petri Nets

132 RITA • Volume XIV • Número 2 • 2007

[16] Te-Kai Liu, Alan Feket, and Ian Gorton. Predicting the Performance of

Middleware-based Application at the Design Level. In WOSP, pages 166-170, January 2004.

[17] OMG. Common Object Request Broker Architecture: Core Specification

(CORBA 3.0), 2002.

[18] Michael Pang and P. Maheshwari. Benchmarking Message-Oriented Middleware

TIB/RV vs. SoniqMQ. In Work-shop on Foundations of Middleware Technologies,

California, USA, October 2002.

[19] Dorina Petriu, Hoda Amer, Shikharesh Majumdar, and Istabrak Abdul-Fatah.

Using Analytic Model for Predicting Middleware Performance. In Second International

Workshop on Software Performance, pages 189-194, Ottawa, Canada, September 2000.

[20] Srinivasan Ramani, Katerina Goseva-Popstojanova, and B Trivedi, S Kishorhy. A

Framework Performability Model-ling of Messaging Services in Distributed Systems. In 8th

IEEE International Conference on Engineering of Complex Computer Systems, pages 25-34,

December 2002.

[21] Srinivasan Ramani, S Kishor Trivedi, and Balakrishnan Dasarathy. Performance

Analysis of the CORBA Event Ser-vice Using Stochastic Reward. In 19th IEEE Symposium

on Reliable Distributed Systems (SRDS), pages 238-247, October 2000.

[22] Srinivasan Ramani, S Kishor Trivedi, and Balakrishnan Dasarathy. Performance

Analysis of the CORBA Notification Service. In 20th IEEE Symposium on Reliable

Distributed Systems (SRDS), pages 227-236,October 2001.

[23] Weili Tao and Shikharesh Majumdar. Application Level Performance

Optimizations for CORBA-Based Systems. In Third International Workshop on Software

Performance, pages 95-103, Rome, Italy, 2002.

[24] Phong Tran and Paul Green_eld. Behaviour and Performance of Message-Oriented

Middleware Systems. In 22nd International Conference on Distributed Systems Workshops

(ICDSW'02), pages 1-6, 2002.

[25] T. Verdickt, B Dhoedt, F. Gielen, and P. Demeester. Modelling the Performance

of CORBA Using Layered

 [26] Steve Vinoski. Where is Middleware? IEEE Internet Computing, 2002.

[27] M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of Generalised Stochastic

Petri Nets for the performance evaluation of multiprocessor systems. ACM Transactions on

Computer Systems, 2:93–122, 1984.

[28] J.L. Peterson. Petri Nets and the Modeling of Systems. Prentice-Hall, Englewood

Cliffs, New Jersey, 1981.

[29] Joseph M. Juran, A. Balnton God Frey .Juran.’s quality handbook, 1998, 5 th

edtion.

