
3D Compression: from A to Zip
a first complete example

Thomas Lewiner1

Abstract: Images invaded most of contemporary publications and communica-
tions. This expansion has accelerated with the development of efficient schemes ded-
icated to image compression. Nowadays, the image creation process relies on multi-
dimensional objects generated from computer aided design, physical simulations, data
representation or optimisation problem solutions. This variety of sources motivates the
design of compression schemes adapted to specific class of models.
The recent launch of Google Sketch’up and its 3D models warehouse has accelerated
the shift from two-dimensional images to three-dimensional ones. However, these
kind of systems require fast access to eventually huge models, which is possible only
through the use of efficient compression schemes.
This work is part of a tutorial given at the XXth Brazilian Symposium on Computer
Graphics and Image Processing (Sibgrapi 2007).

Abstract: Imagens invadiram a maioria das publicações e comunicações contem-
porâneas. Esta expansão acelerou-se com o desenvolvimento de métodos eficientes de
compressão da imagem. Hoje o processo da criação de imagens é baseado nos objetos
multidimensionais gerados por CAD, simulações fı́sicas, representação de dados ou
soluções de problemas de otimização. Esta variedade das fontes motiva o desenho de
esquemas de compressão adaptados a classes especı́ficas de modelos.
O lançamento recente do Google Sketch’up com o seu armazém de modelos 3D
acelerou a passagem das imagens bidimensionais às tridimensionais. Entretanto, este
o tipo de sistemas requer um acesso rápido aos modelos 3D, possivelmente gigantes,
que é possı́vel somente usando de esquemas eficientes da compressão.
Esse trabalho faz parte de um tutorial ministrado no Sibgrapi 2007.

1 Introduction

Images surpassed the simple function of illustrations. In particular, artificial and digi-
tal images invaded most of published works, from commercial identification to scientific ex-
planation, together with the specific graphics industry. Technical advances created supports,
formats and transmission protocols for these images, and these contributed to this expansion.
Among these, high quality formats requiring low resources appeared with the development

1Departamento de Matemática, PUC-Rio de Janeiro (http://www.mat.puc-rio.br/˜tomlew/)
The author would like to thank the CNPq for financial support through projects MCT/CNPQ 02/2006.

http://www.mat.puc-rio.br/~tomlew/

3D Compression: from A to Zip a first complete example

of generic, and then specific, compression schemes for images. More recently drew on the
sustained trend to incorporate the third dimension into images, and this motivates orienting
the developments of compression towards higher dimensional images.

There exists a wide variety of images, from photographic material to drawings and
artificial pictures. Similarly, higher dimensional models are produced from many sources:
The graphics industry designers draw three–dimensional objects by their contouring surface,
using geometric primitives. The recent developments of radiology make intense use of three–
dimensional images of the human body, and extract isosurfaces to represent organs and tis-
sues. Geographic and geologic models of terrain and underground consist in surfaces in the
multi–dimensional of physical measures. Engineering usually generate finite elements solid
meshes in similar multi–dimensional spaces to support physical simulations, while reverse
engineering, archæological heritage preservation and commercial marketing reconstruct real
objects from points.

Compression methods for three–dimensional models appeared mainly in the mid 1990’s
with [1] and developed quickly since then. This evolution turned out to be a technical ne-
cessity, since the size and complexity of the typical models used in practical applications
increases rapidly. The most performing practical strategies for surfaces are based on the
Edgebreaker of [35] and the valence coding of [26]. These are classified as connectivity–
driven mesh compression, since the proximity of triangles guides the sequence of the surface
vertices to be encoded. More recently, dual approaches proposed to guide the encoding of the
triangle proximity by the geometry, such as done in [15].

Actually, the diversity of images requires this multiplicity of compression programs,
since specific algorithms usually perform better than generic one (such as the popular Zip
method), if they are well adapted. This tutorial aims at introducing the basic concepts of
compression with examples on 3D models compression for an audience without prior knowl-
edge in modeling or compression. The examples and algorithms are chosen from works
published in the Sibgrapi.

2 Information Representation

We would like first to briefly introduce what we mean by compression, in particular
the relation of the abstract tool of information theory [39, 33, 9], the asymptotic entropy of
codes [9, 38, 10] and the practical performance of coding algorithms [38, 28, 27, 23]. General
references on data compression can be found in [54].

10 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

2.1 Coding
Source and codes. Coding refers to a simple translation process that converts symbols from
one set, called the source to another, this last one being called the set of codes. The conversion
can then be applied in a reverse way, in order to recover the original sequence of symbols,
called message. The purpose is to represent any message of the source into a more convenient
way, typically a way adapted to a specific transmission channel. This coding can intend to
reduce the size of the message [54], for example for compression applications, or on the
contrary increase its redundancy to be able to detect transmission errors [8].

Enumeration. A simple example coder would rely on enumerating all the possible mes-
sages, indexing them from 1 to n during the enumeration. The coder would then simply
assign one code for each message. In practise, the number of possibilities is huge and dif-
ficult to enumerate, and it is hard to recover the original message from its index without
enumerating again all the possible messages. However, this can work for specific cases [44].
These enumerative coders give a reference for comparing performance of coders. However,
in practical cases, we would like the coding to be more efficient for the most frequent mes-
sages, even if the performance is altered for less frequent ones. This reference will thus not
be our main target.

Coder performance. Two different encodings of the same source will in general generate
two coded messages of different sizes. If we intend to reduce the size of the message, we
will prefer the coder that generated the smallest message. On a specific example, this can
be directly measured. Moreover, for the enumerative coder, the performance is simply the
logarithm of the number of elements, since a number n can be represented by log pnq digits.
However, this performance is hard to measure it for all the possible messages of a given
application. [39], [33] and [9] introduced a general tool to measure the asymptotic, theoretic
performance of a code, called the entropy.

2.2 Information Theory
Entropy. The entropy is defined in general for a random message, which entails message
generators as symbol sources or encoders, or in particular to a specific message (an observa-
tion) when the probabilities of its symbols are defined. If a random message m of the code
is composed of n symbols s1 . . . sn, with probability p1 . . . pn respectively, then its entropy
h pmq is defined by h pmq � °

i�pi log ppiq. As referred in [9], this definition fits com-
munication systems, but it is only one possible measure that respects the following criteria:

1. h pq should be continuous in the pi.
2. If all pi are equal, pi � 1

n , then h pq should increase with n, since there are more
possible messages.

3. If the random message m be broken down into two successive messages m1 and m2,
then h pmq should be the weighted sum of h pm1q and h pm2q.

RITA Volume XV Número 1 2008 11

3D Compression: from A to Zip a first complete example

Huffman coder. [38] introduced a simple and efficient coder that writes each symbol of the
source with a code of variable size. For example, consider that a digital image is represented
by a sequence of colours sblack, sred, sdarkblue, slightblue, swhite. A simple coder will assign
a symbol to each colour, and encode the image as the sequence of colours. This kind of coder
will be called next an order 0 coder.

If the image is a photo of a seascape, as the one of Figure 1, the probability to have blue

Figure 1. Huffman coding relies on the frequency of symbols, here the pixel colours.

colours in the message will be higher than for red colours. Huffman proposed a simple
way to encode with less bits the more frequent colours, here blue ones, and with more bits
the less frequent symbols. Consider that each of the colour probabilities is a power of 2:
pblack � 2�3, pred � 2�4, pdarkblue � 2�1, plightblue � 2�2, pwhite � 2�4.
These probabilities can be represented by a binary tree, such as each symbol of probability
2�b is a leaf of depth b in the binary tree. Then each symbol is encoded by the left (0) and right
(1) choices to get from the root of the tree to that symbol. The decoding is then performed
by following the left and right codes until reaching a leaf, and the symbol of that leaf is a
new element of the decoded message. In that context, the probability of each left and right
operation is 1

2 , which maximises the entropy (h pmq � 1), i.e., the theoretical performance.

Entropy coder. The original Huffman code also worked out for general probabilities, but
without maximising the entropy. It uses a greedy algorithm to choose how to round off the
probabilities towards powers of 2 [38]. However, Shannon proved that it is asymptotically
possible to find a coder of maximum entropy [9], and that no other coder can asymptotically
work better in general. This is the main theoretical justification for the definition of h pq.
[38] introduced a simpler proof of that theorem, by grouping sequence of symbols until their
probability become small enough to be well approximated by a power of 2.

12 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

2.3 Levels of Information
In practise, although the entropy of a given coder can be computed, the theoretical

entropy of a source is very hard to seize. The symbols of the source are generally not in-
dependent, since they represent global information. In the case of dependent symbols, the
entropy would be better computed through the Kolmogorov complexity [31]. For example,
by increasing the contrast of an image, as human we believe that we loose some of its de-
tails, but from the information theory point of view, we added a (mostly) random value to the
colours, therefore increasing the information of the image.

An explanation for that phenomenon is that the representation of an image as a se-
quence of colours is not significant to us. This sequence could be shuffled in a deterministic
way, it would not change the coding, but we would not recognise anymore the information of
the image. In order to design and evaluate an efficient coding system, we need to represent the
exact amount of information that is needed for our application, through an independent set
of codes. If we achieve such a coding, then its entropy can be maximised through a universal
coder, such as the Huffman coder or the arithmetic coder [28, 23].

3 Meshes and Geometry

Geometrical objects are usually represented through meshes. Especially for surfaces
in the space, triangulations had the advantage for rendering of representing with a single el-
ement (a triangle) many pixels on screen, which reduced the number of elements to store.
Although the increasing size of usual meshes reduced this advantage, graphic hardware and
algorithms are optimised for these representations and meshes are still predominant over point
sets models. Moreover, several parts of the alternative to meshes require local mesh genera-
tion, which becomes very costly in higher dimensions. Finally, meshes describe in a unique
and explicit manner the support of the geometrical object, either by piecewise interpolation
or by local parameterisation such as splines or NURBS.

To a real object correspond several meshes. These meshes represent the same geome-
try and topology, and thus differ by their connectivity. The way these objects are discretised
usually depends on the application, varying from visualisation to animation and finite ele-
ment methods. These variations make it harder to define the geometric quality of a mesh
independently of the application, even with a common definition for the connectivity. Further
references on the following definitions can be found in [2, 42, 45].

3.1 Simplicial Complexes

There are various kind of meshes used in Computer Graphics, Scientific Visualisation,
Geometric Modelling and Geometry Processing. However, the graphic hardware is optimised
for processing triangles, line segments and points, which are all special cases of simplices.

RITA Volume XV Número 1 2008 13

3D Compression: from A to Zip a first complete example

We will therefore focus mainly on meshes made of simplices, called simplicial complex, and
one of its extensions to meshes made of convex elements, which we will refer as polytopes.
This notion can be further extended to cell complexes [45], but these are only used for high–
level modelling and we will not use them in this tutorial.

Figure 2. Simplices from dimension 0 to 3.

Simplex. A simplex is an n–dimensional analogue of a triangle. More precisely, a sim-
plex σn of dimension n, or n–simplex for short, is the open convex hull of n � 1 pointstv0, . . . , vnu in general position in some Euclidean space Rd of dimension n or higher, i.e.,
such that no m–plane contains more than pm�1q points. The closed simplex σ̄n is the closed
convex hull of tv0, . . . , vnu. The points vi are called the vertices of σn. For example, a
0–simplex is a point, a 1–simplex is a line segment, a 2–simplex is a triangle, a 3–simplex is
a tetrahedron, and a 4–simplex is a pentachoron, as shown on Figure 2.

Incidence. The open convex hull of any m n vertices of σn is also a simplex τm, called
an m–face of σn. We will say that σn is incident to τm, and denote σn ¡ τm. The 0—faces
are called the vertices, and the 1–faces are called the edges. The frontier of a simplex σ,
denoted by Bσ, is the collection of all of its faces.

Figure 3. Simplicial complex (left) and a set of simplices not being a complex (right).

Complex. A simplicial complex K of Rd is a coherent collection of simplices of Rd, where
coherent means that K contains all the faces of each simplex (@σ P K, Bσ � K), and

14 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

contains also the geometrical intersection of the closure of any two simplices (@ pσ1, σ2q P
K2, σ̄1 X σ̄2 � K), as illustrated on Figure 3. Two simplices incident to a common simplex
are said to be adjacent. The geometry of a complex usually refers to the coordinates of its
vertices, while its connectivity refers to the incidence of higher–dimensional simplices on
these vertices.

3.2 Pure Simplicial Complexes

Dimension. The dimension n of a simplicial complex K is the maximal dimension of its
simplices, and we will say that K is an n–complex. A maximal face of a simplicial complex
of dimension n is an n–simplex of K.

Euler–Poincaré characteristic. Denoting #m pKq the number of m–simplices in K, the
Euler–Poincaré characteristic χ pKnq of an n–complex Kn is a topological invariant [45]
defined by χ pKnq � °

mPN
p�1qm#m pKnq.

Pure complexes. Roughly speaking, a complex is pure if all the visible simplices have the
same dimension. More precisely, a simplicial complex Kn of dimension n is pure when each
p–simplex of K, p n, is face of another simplex of K.

Boundary. The boundary BK of a pure simplicial complex Kn is the closure of the set,
eventually empty, of its (n� 1)–simplices that are face of only one n–simplex: BKn �
σn�1 : # lk

�
σn�1� � 1

(
. The simplices of the boundary of K and their faces are called

boundary simplices, and the other simplices are called interior simplices.

3.3 Simplicial Manifolds

Figure 4. A surface with two bounding
curves

Figure 5. A non–pure 2–complex with a
non–manifold vertex.

RITA Volume XV Número 1 2008 15

3D Compression: from A to Zip a first complete example

Manifolds. A simplicial n–manifold Mn is a pure simplicial complex of dimension n
where the adjacent simplices of each interior vertex is homeomorphic to an open n–ball
Bn and the adjacent simplices of each bounding vertex is homeomorphic to the intersection
of Bn with an closed half–space. This implies that each (n�1)–simplex of M is the face of
either one or two simplices. In particular, the boundary of an n–manifold is a (n�1)–manifold
with an empty boundary.

Orientability. An orientation on a simplex is an ordering pv0, . . . , vnq on its vertices. Two
orientations are equivalent if they differ by an even permutation. There are therefore two op-
posite orientations on a simplex. A simplicial manifold Mn is orientable when it is possible
to choose a coherent orientation on all its simplices. More precisely, if σn�1 � pv1, . . . , vnq
is an oriented interior (n�1)–simplex of Mn, face of ρ � σn�1 � v and ρ1 � σn�1 � v1, then
the orientation of ρ and ρ1 is coherent the orientation of ρ is equivalent to pv, v1, . . . , vnq and
the orientation of ρ1 is opposed to pv1, v1, . . . , vnq. This orientation thus defines the notion of
next and previous vertex inside a triangle of a simplex.

Surfaces. For example, a 2–manifold is a surface, i.e. a simplicial complex made of only
vertices, edges and triangles where each edge is in the frontier of either one or two trian-
gles and where the boundary does not pinch. For example, Figure 4 shows an example of
2–manifold and Figure 5 illustrates a 2–complex that is neither pure nor a manifold. The
topology of surfaces can be easily defined from its orientability and its Euler–Poincaré char-
acteristic, using the Surface classification theorem [3]: Any oriented connected surface S is
homeomorphic to either the sphere S2 (g pSq � 0) or a connected sum of g pSq ¡ 0 tori, in
both cases with some finite number b pSq of open disks removed. The number g pSq is called
the genus of S , and b pSq its number of boundaries. The Euler–Poincaré characteristic χ pSq
of S is equal to χ pSq � #2 pSq �#1 pSq �#0 pSq � 2� 2 � g pSq � b pSq.
Dual. The dual of an n–manifold Md is the manifold polytope obtained by reversing the
incidence relations of its cells, i.e. creating a vertex for each n–cell of Md, and an m–cell
for each (n�m)–cell of Md, spanning the vertices created for each n–cell of its adjacent
simplices in Md.

4 Connectivity–Driven Compression

Since there is still no strong relation between the geometry and the connectivity of
these meshes for the usual objects considered by graphics applications, dedicated compres-
sion schemes consider either that the common information can be deduced from either the
connectivity or the geometry. The first option assumes that the star of a simplex has a simple
geometry, which can be well approximated by simple methods such as linear interpolation.
Then, the geometry can be efficiently encoded by a connectivity traversal of the mesh, lead-
ing to connectivity–driven compression schemes. The second option predicts the connectivity

16 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

from the geometry, and will be referred as geometry–driven compression schemes. In that
case, the connectivity is usually better compressed, but it needs efficient geometry coding.

In this section, we will focus on the connectivity part of the compression. These
connectivity–driven methods improved so much in the last decade that the compression ra-
tio for usual surface connectivity turns around 2/3 bits per vertex. We will give a general
framework for handling the critical elements of the connectivity: the topological singularities
We will then focus on the Edgebreaker (Figure 6 and Figure 7) scheme, and introduce two
new improvements: the handling of boundary, as a consequence of this framework for sin-
gularities, and a small improvement of the decompression algorithm. We will conclude this
section with compression ratios of the Edgebreaker on usual models, and we will detail the
specificities of connectivity–driven compression scheme.

4.1 Principles

Connectivity–driven compression schemes rely on a traversal of the mesh in order to
visit each vertex, and to identify it on further visits. This way, the geometry of the vertex
needs to be transmitted only once, and the traversal encodes the connectivity of the mesh.
This general framework suits particularly well for manifold. Most of the existing compres-
sion techniques are dedicated to surfaces, and we will focus on these algorithms. Further
extensions to non–manifold cases are described in [34], while simple extensions of the most
common schemes exist for solid models in [22, 29].

Connectivity–driven compression begun with cache problems in graphic cards: the
rough way of transmitting triangle meshes from the main memory to the graphic card is (still)
to send the three vertices of the triangle, represented by their three floating–point coordinates.
Each triangle is then encoded with 96 bits! [1] proposed to represent these triangle meshes
by generalised strips in order to share one or two vertices with the last triangle transmitted,
reducing by at least a half the memory required previously. This mechanism uses also a small
prediction scheme to optimise caching.

Then, these strips were generalised by a topological surgery approach in [5, 4]. These
works introduced the most general framework for connectivity–driven compression, and has
been efficiently derived into the Edgebreaker [35], and with a more flexible way into the
valence coding of [26, 14]. The Edgebreaker has been extended to handle larger categories
of surfaces in [46, 19], while valence coding has been tuned using the geometry in [14],
discrete geometry [50]. In addition, the generated traversal of valence coding can be cleaned
using [44].

With these improvements, the connectivity of usual models can be compressed with
less than 3 bits per vertex. Geometry became the most expensive part, which can be reduced
using prediction [26, 24] and high–quality quantisation [25, 49]. However, we will not focus
here on the compression of the geometry.

RITA Volume XV Número 1 2008 17

3D Compression: from A to Zip a first complete example

(a) Vertex labels used in the
next sequence.

(b) First triangle not en-
coded: P, vertices 0, 1, 2
are marked. It will be the
root of the dual tree. The
traversal starts from edge
12.

(c) Since vertex 3 is un-
marked, 132 is created and
3 is marked: C. This
extends the dual tree and
the primal remainder. The
traversal continues on the
right.

(d) Similarly, since vertex 4
is unmarked, 143 is created
and 4 is marked: C.

(e) Again, vertex 5 marked:
C

(f) Since vertex 0 is marked
and the right triangle is
marked already, 105 is at-
tached and the traversal
continues on the left: R.
This extends only the dual
tree.

(g) C again: vertex 6 is
marked.

(h) Again, vertex 2 is al-
ready marked and the right
triangle also: R.

(i) Again: R. (j) C again: vertex 7 is
marked.

(k) Again, vertices 4 and
then 5 are already marked,
with their right triangles
also: RR.

(l) Since vertex 6 is
marked, and both the
right and left triangles are
marked, attach 567: E.
This extends the dual tree
only.

Figure 6. Edgebreaker compression of a triangulated cube.

18 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

(a) Decode P: create the
first vertex.

(b) Decode C: create a new
triangle.

(c) Decode C: create a new
triangle.

(d) Decode C: create a new
triangle.

(e) Decode R: attach one
triangle. The new edge will
be identified later by the Zip
procedure.

(f) Decode C: create a new
triangle.

(g) Decode R: attach one
triangle.

(h) Decode R: attach one
triangle.

(i) Decode CRR as
above.

(j) Decode E: close one tri-
angle. The two new edges
will be identified by the Zip
procedure.

(k) The above Wrap pro-
cedure already decoded the
adjacencies of the traversal:
this is the dual tree.

(l) The Zip procedure will
then identify the edges
of the primal remainder,
matching edges created by
a C with the others.

Figure 7. Wrap&Zip decompression of a triangulated cube.

RITA Volume XV Número 1 2008 19

3D Compression: from A to Zip a first complete example

4.2 Primal or dual remainders
Primal and dual graphs. The main advance of topological surgery [5] was to substitute
mesh connectivity compression by graph encoding. A graph can be considered as a simplicial
complex of dimension 1. Therefore, the 1–skeleton Kp1q of any simplicial complex is a graph,
called the primal graph of the manifold. Moreover for manifolds, the 1–skeleton of this dual
manifold is also a graph, called the dual graph of the manifold. For example, Figure 8
represents the primal and the dual graph of a triangulated sphere.

Figure 8. (left): the primal graph and (right): the dual graph of a triangulated sphere.

Tree encoding. For simplicial surfaces, the dual graph has a very nice property: each node
of the graph has three incident links. Encoding the connectivity thus resumes to encoding
this dual graph. In order to encode the geometry, this graph must be encoded by traversal,
i.e. a spanning forest. Since each connected component can be encoded separately, we will
consider only connected orientable surfaces, and the spanning forest is, in that case, a tree.
This tree can be encoded from its root by enumerating for each node how many sons he has.
This is the principle of both the valence coding and the Edgebreaker algorithms. The first
one encodes the mesh by enumerating the valence of each node of a spanning tree in the
primal graph, while the second one encodes a little more than the valence of each node of a
spanning tree in the dual graph. In this last case, the valence is either 1, 2 or 3 since the nodes
of the dual graph have a constant valence, which simplifies the coding.

Remainders. For clarity of the presentation, we will focus on spanning tree of the dual graph
and the primal remainder, which is the focus of the Edgebreaker. What follows can be read
identically by considering spanning tree of the primal graph and the dual remainder, which
is the point of view of the valence coding. Consider a surface S , with a spanning tree S21

of its dual graph. Observe that the links of S21 correspond to edges of S . Then, consider
the primal graph S1 (1–skeleton) of S . Its links also correspond to edges of S . The graph
S01 having the same nodes as S1 and the links of S1 not represented in the dual spanning

20 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

Figure 9. (left): a dual spanning tree S21 extracted from the dual graph. (right): the primal
remainder S01 of S21, which is a subgraph of the primal graph.

tree S21 is called the primal remainder of S21. This remainder is what is left to encode after
the traversal of the dual mesh, i.e. S21, has been encoded. For example, the Edgebreaker
encodes this primal remainder by specific symbols for the valence 1 and 2 of the dual tree.
Moreover, this primal remainder contains all the vertices of the mesh, and will therefore be
used to drive the encoding of the geometry.

4.3 Topological Singularities

Topology of the remainders. If the remainder is a tree, then it can be easily encoded. The
original Edgebreaker works directly in that case. However, this is not always the case, and
the topology of the primal remainder actually characterises the topology of the (orientable)
surface. For the dual remainder used by the valence coding, there is a detail to assert when
the surface has a non–empty boundary. This process relies on a very simple calculus of the
Euler characteristic of the remainder. According to Section 3.2, the Euler characteristic of a
surface is given by χ pSq � #2�#1�#0, and according to the surface classification theorem
introduces in Section 3.3, χ pSq � 2� 2 � g pSq � b pSq. Since S21 is a tree with exactly one
node for each of the #2 faces, it has #2�1 links. Therefore, the Euler characteristic of the
primal remainder S01 is χ

�S01
� � χ pSq � χ

�S21
� � 1 � 2 � g pSq � b pSq. We get the

same result for the case of a dual remainder.

Remainder of topological spheres. If the surface S is a topological sphere, then g pSq �
b pSq � 0, and the remainders have Euler characteristic 1. From the Jordan curve theo-
rem [3], the remainders are connected, since they cannot be disconnected by the correspond-
ing spanning tree, which has no closed curve. Then, the remainder is a connected graph with
Euler characteristic 1: it is a tree. This primal remainder will be easy to encode, relating
topological simplicity to easy compression with connectivity–driven schemes.

RITA Volume XV Número 1 2008 21

3D Compression: from A to Zip a first complete example

Figure 10. (left): a primal remainder on a torus (genus 1): the topmost and bottommost
horizontal edges are identified, and so do the leftmost and rightmost ones. (right) a primal

remainder on an annulus (two bounding curves).

Morse edges. For a generic remainder, its Euler characteristic is 1 � 2 � g pSq � b pSq.
In the case of a dual spanning tree, the primal remainder is always connected. However,
for primal spanning trees on surfaces with a non–empty boundary, the dual remainder can be
disconnected. This can be avoided if the primal spanning tree contains all the bounding edges
of the surface, except one per boundary components to keep it as a tree. With this restriction,
the remainder is a connected graph with exactly 2 � g pSq � b pSq independent cycles, where
a cycle is a sequence of distinct adjacent links whose last one is adjacent to the first one, and
where independent means that removing one link of a cycle does not break any other. For
each cycle, one edge that would break it will be called a Morse edge, since it induces a change
in the topology of the surface, Any connectivity–driven compression scheme designed for
topological spheres can be extended to any orientable surface by encoding separately these
Morse edges. For example, in the case of a sphere, the primal remainder is a tree, as shown
on Figure 9. For a mesh with genus one or with two boundary curves, the primal remainder
is a graph with two cycles, as shown on Figure 10.

5 The Edgebreaker example

The Edgebreaker scheme has been enhanced and adapted from Topological Surgery
[5] to yield an efficient but initially restricted algorithm [35], which encodes the connectivity
of any simplicial surface homeomorphic to a sphere with a guaranteed worst case code of
1.83 bits per triangle [21]. The Wrap&Zip algorithm introduced in [37] enhanced the original
Edgebreaker decompression worst–case complexity from O

�
n2
�

to O pnq, where n is the
number of triangles of the mesh. It decompresses the mesh in two passes, a direct and a

22 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

recursive one. It is possible to decompress it in only one pass using the Spirale Reversi
algorithm of [30], but it requires to read the encoded backwards, which is not appropriate for
the Huffman encoding of [21] or the arithmetic encoding. But the true value of Edgebreaker
lies in the efficiency and in the simplicity of its implementations [36], which is very concise.
This simple algorithm has been extended to deal with non–simplicial surfaces [51] and the
compression of simplicial surfaces with handles has been enhanced in [47] using handle
data. Because of its simplicity, Edgebreaker is viewed as the emerging standard for 3D
compression [54] and may provide an alternative for the current MPEG–4 standard, which
is based on the Topological Surgery approach [5].

In this section, we will enhance the Edgebreaker compression for surfaces with a
non–empty boundary. [21] encoded these surfaces by closing each bounding curve with a
dummy vertex. This is a very simple but expensive solution: first, it requires encoding each
bounding edge with a useless triangle; second, it requires extra code to localise the dummy
vertex; and third, it gives bad geometrical predictors on the boundary. The original solution
of [35] however encodes bounding curves a special symbol containing their length, which
solves the first item but does not describe explicitly the topology of the surface, and gave
bad prediction on the boundary. As we introduced in [19], we use directly the handle data
to encode the boundaries, which solves the above mentioned problems and enhances the
compression ratio. We will also introduce a small acceleration to the Wrap&Zip procedure
in order to avoid the recursion, accelerate the decompression and reduce the memory use.

5.1 CLERS encoding

Gate based compression. Edgebreaker encodes the connectivity of the mesh by producing
the stream of symbols taken from the set C,L,E,R,S, called the clers stream. It traverses
spirally the dual graph of a surface in order to generate a spanning tree. At each step, a
decision is made to move from one triangle t to an adjacent triangle t1 through an edge e1
called the gate. The vertex v of t not contained in the previous gate e is called the apex of the
gate. This decision depends on the previously visited triangles, which are marked together
with their incident vertices.

Right–first traversal. The spiral traversal means that the next triangle is chosen to be the
one on the right if not marked, where the right triangle means that the link of the new gate e1
contains the vertex next to the apex v of the previous gate e (see Section 3.3 for the definition
of next). This gives a direct construction of the dual spanning tree and an order on it.

CLERS codes. The traversal is then encoded by the valences (1, 2 or 3) of the nodes of the
dual spanning tree S21, and for the valence 2 case, by the current position (H, left or right)
of the primal remainder S01 with respect to the new triangle. The corresponding symbols are
stated on Table 1. The valence of the nodes of S21 can be easily detected during the traversal,
using the rules of Table 1 [35].

RITA Volume XV Número 1 2008 23

3D Compression: from A to Zip a first complete example

Figure 11. The Edgebreaker encoding. A C corresponds to a vertex Creation. With the
outward orientation, an L means that the Left triangle has been visited, whereas an R means

that the Right triangle has been visited. S stands for Split, and E for End.

operation S21 val. S21 pos. apex left tri. right tri.
C make ∆ with 2 { and 1 � 2 H unmarked unmarked unmarked
R complete ∆ with 1 right { 2 left marked unmarked marked
L complete ∆ with 1 left { right marked marked unmarked
E complete ∆ 1 marked marked marked
S make ∆ with 2 { 3 marked unmarked unmarked

Table 1. The CLERS codes.

Original compression. We will now describe directly the above formal presentation of the
Edgebreaker. The algorithm starts by encoding the geometry of a first triangle, that will be
the root of S21. In the text, we will call it a P triangle. The traversal begins right after with

(a) P (b) C (c) R (d) E

Figure 12. Coding of a tetrahedron: PCRE.

24 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

the rules of Table 1: if the apex is not marked, a C is encoded with the geometry of the apex,
and the traversal continues on the right triangle. Otherwise, if the left triangle is marked, an
R symbol is encoded and the traversal continues on the right triangle. Similarly, if the right
triangle is marked, an L symbol is encoded and the traversal continues on the left triangle.
If none of the triangles are marked (but the apex is), an S symbol is encoded. The traversal
splits since the spanning tree has a branching here. The first traversed branch begins with
the right triangle, and continues on the left one when the first branch ends. Finally, if both
adjacent triangles are marked, the branch ends with an E symbol. This branching mechanism
can be simply implemented with an S stack that stores the left triangle of each S triangle.

5.2 Fast decompression

Wrap&Zip decompression. The original Wrap&Zip procedure of [37] decodes the clers
stream in two passes. The Wrap simply decodes the dual spanning tree, with the geometry
of each vertex at each C symbol. It decodes the S/E branchings and positions correctly the
adjacent triangles using the branching order and the distinction between the C or L symbols
and the R symbols. Then, the Zip procedure completes this spanning tree to obtain the dual
graph. If the surface has the topology of a sphere, then there is enough information to recover
the entire dual graph, as we will see next. The procedure is very similar to the enumeration
of [43]: it looks for the star of each vertex v, and if its star is not closed, and if the two
bounding edges of its star are associated to a C on one side, and on another symbol on the
other side, then these two edges are identified. A recursive implementation of this procedure
is necessary to achieve a linear complexity, using the fact that the closure of a star usually
allows closing adjacent stars, except when reaching an L or E symbol.

Fast Zip. Actually, the Zip procedure is a recursive traversal of the dual spanning tree, and
it closes the stars from the leaves to the root. Actually, since the algorithm just built the
spanning tree, there is no need to traverse it all to find the leaves. It is sufficient to use a C
stack during the Wrap that stores each C triangle. Popping the C stack reads it in the reverse
way, and the algorithm closes one star at each C symbol, and three for each P symbol, instead
of trying all triangles. This spares half of the tests. Moreover, stars can be closed at some R
and E symbols during the Wrap. This can be used to keep the size of the C stack small, and
allows a better usage of the multiway geometry prediction of [24].

5.3 Topology encoding

Handle Sh symbols. As we said earlier, if the surface S has genus g pSq ¡ 0, the primal
remainder S01 is not a tree anymore, as illustrated on Figure 13. For a surface with an empty
boundary, S01 has 2 � g pSq cycles. These cycles can be simply detected during the traversal

RITA Volume XV Número 1 2008 25

3D Compression: from A to Zip a first complete example

Figure 13. Dual tree generated by the Edgebrealer traversal and the primal remainder, with
the two Morse edges in red.

and efficiently encoded using [47], while preserving the original Edgebreaker compression
scheme. These cycles correspond to a branching, and thus to an S symbol. However, the
two branchings induced by each genus of the surface loops back, and the left edge of the S
triangle is visited before its right branch ends. During the execution, this is easily detected
when popping the S stack containing the triangles left to S symbols: if the top of the S
stack is not marked, the algorithm continues as normally. If the left triangle was marked,
the S symbol actually corresponds to a handle, and will be marked as a handle Sh symbol.
This symbol is encoded as a normal S, and special information identifying this Sh symbol
is encoded in the handle data. In order to decompress handles directly, the position of the
left triangle in the clers stream can be encoded, for example by the number of S symbol that
preceded the Sh symbol and by the number of R, L and E symbols that preceded the left
triangle, since handle Sh triangles are obviously closed by only these kind of triangles. These
numbers can be encoded by differences to spare even more space.

(a) Reaching first S trian-
gle

(b) Reaching second S tri-
angle

(c) The lower–right E tri-
angle closes the handle.

(d) The upper–left E trian-
gle closes the handle.

Figure 14. Coding of a torus: the creation of two handle S triangles: the first and the second
S symbols.

26 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

Example. To illustrate the algorithm, consider the triangulated torus of Figure 14, where
the edges on the opposite sides of the rectangle are identified. This simplicial complex can
be embedded in R3. The Edgebreaker compression algorithm encodes the connectivity
of the mesh though the following clers stream: CCCCRCSCRSSRLSEEE, completed
with the following handle data: 0—4�,0—3�. There are four triangles labelled with an S
symbol. The left triangles of the two last ones are visited when popping the S stack. On the
contrary, the two first ones are visited before the being popped out of the S stack. These two
triangles are detected as handle Sh symbols. This is encoded in the handle data as follows:
the first handle Sh symbol is also the first S symbol, and the first number encoded is therefore
0. There are four possible matches (R, L and E symbols) for its left triangle before the good
one, which is encoded by the 4. Since it is an E triangle, it can be glued on both sides, and
the left side is indicated by the ε ��. The encoding is done the same way for the second
handle Sh symbol.

First bounding curve. This scheme can be extended to boundary compression, since they
correspond to the same Handle symbols. Using the handle data to encode boundaries is then
more coherent, gives a direct reading of the surface topology through this handle data even
before decoding the mesh, and allows a specific prediction scheme for boundaries. Consider
first a connected surface S with one bounding curve. Suppose that we close it by adding a
face incident to each bounding edge of S , called the infinite face. The resulted surface S�
has no boundary, and can almost be encoded by the previous algorithm. However, the infinite
face is not a triangle. In the same way that the P triangles are not explicitly encoded, we will
not encode this infinite face, and start the compression directly one of its adjacent triangle.
As in the original Edgebreaker algorithm, we encode and mark first all its vertices, e.g., all
the vertices belonging to the boundary of S . Then, for the first boundary, we only need to
know if the surface component has a boundary or not.

Boundary Sb symbols. Now, consider a connected surface has more than one bounding
curve. Then, we distinguish arbitrarily one of them as the first boundary and the encoding
uses the technique of the last paragraph. During the traversal, we label each triangle touching
a new bounding curve as a boundary Sb triangle. As for handles, we encode it as a normal
S symbol in the clers handle, and specify that it is a boundary Sb symbol in the handle
data. To distinguish with handle Sh symbols, their first number is negative. Also, due to
the orientation of the bounding curve, the left triangle is always glued on its left side, and
we do not need to specify the last ε �� or ε ��, and we can avoid counting the L symbols
to localise it. From the Euler characteristic, we know that there is exactly one boundary Sb

symbol per bounding curve. On Figure 15, the only handle S triangle is the first triangle with
a vertex on the internal boundary that we encounter during the traversal. As said before, there
are 2 �g pSq�b pSq�1 such handle S triangles for each surface component with genus g pSq
and b pSq bounding curves.

RITA Volume XV Número 1 2008 27

3D Compression: from A to Zip a first complete example

(a) The first triangle is chosen adjacent
to a boundary. The vertices of the central
infinite face are encoded.

(b) An unmarked boundary is reached:
the corresponding S triangle is a bound-
ary S triangle.

Figure 15. Coding of an annulus: initialisation and creation of boundary S triangles.

Multiple components. The compression processes successively each surface component.
When the component has no boundary, the compression encodes explicitly the vertices of the
first triangle (uncoded P symbol). Otherwise, it encodes the vertices of the first bounding
curve. In practise, we only need to transmit the number of components with boundary of S .
Then we transmit first all the components with a non–empty boundary, and the other ones.

5.4 Compression algorithms

The compression scheme then decomposes in handling the multiple components and
their first boundaries (Algorithm 2: compress), compress each component by the dual span-
ning tree traversal (Algorithm 5: traverse). The handles are tested along the traversal with Al-
gorithm 1: check handle. The whole process is linear and performed in one pass only.

Algorithm 1 check handle(t): check if triangle t is left to a Sh triangle
1: if not is boundarypt.rightq and t.right.mark R ttrue, falseu then // handle Sh triangle to the

right
2: write

�
handle, t.right.mark�#�RE

�
// write the handle data

3: if not is boundarypt.leftq and t.left.mark R ttrue, falseu then // handle Sh triangle to the left
4: write

�
handle, t.left.mark�#�LE

�
// write the handle data

28 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

Algorithm 2 compress(S): compress separately each component of S
1: b� Ð 0 // counts number of components with boundary
2: for all vertices v P S do // reset marks
3: v.mark Ð is boundary pvq // mark boundary vertices
4: for all triangles t P S do // compress components with boundary first
5: if not t.mark and is boundaryptq then // not boundary or already encoded
6: write boundary ptq // encode boundary
7: traverseptq // component compression
8: b� Ð b� � 1 // one more component with boundary
9: for all triangles t P S do // compress the other components

10: if not t.mark then // not already encoded
11: t.mark Ð true // mark P triangle
12: for all vertices v P Bt do // encode the 3 vertices of the P triangle
13: write vertex pvq // encode the geometry of v
14: v.mark Ð true // mark the vertex
15: traversept.rightq // component compression
16: write

�
handle, b�

�
// write the number of components with boundary

Algorithm 3 decompress(streams): decompress separately each component
1: repeat
2: s� tε Ð readphandleq // read handle data
3: if s ¡ 0 then // handle Sh symbol
4: glueps, t, εq // glue the handle on side ε before the decompression
5: else // boundary Sb symbol
6: glue

��s, t,�
�

// close the bounding curve before the decompression
7: until end of filephandleq // passed the last couple of data
8: b� Ð s // last handle data counts number of components with boundary
9: stack Cstack ÐH // stack of the C and boundary Sb triangles

10: wrap
�
b�, Cstack

�
// wrap using the clers stream

11: fast zippCstackq // closes the stars of the primal remainder
12: read geometrypCstackq // reads the geometry of the surface

Algorithm 4 fast zip(Cstack): decompress one primal remainder
1: stack Cstack1 ÐH // reverse copy of the C stack for the geometry
2: while Cstack � H do // traverse the stack
3: t Ð Cstack.pop pq // pop the next element of the C stack
4: Cstack1.push ptq // copy the C stack
5: if t ¥ 0 then // not a boundary triangle
6: close starptq // close the star of the next vertex
7: Cstack Ð Cstack1 // returns the copy of the C stack

RITA Volume XV Número 1 2008 29

3D Compression: from A to Zip a first complete example

Algorithm 5 traverse(t): encode one component starting from triangle t

1: stack Sstack ÐH // stack of the triangles left to S symbols
2: repeat
3: t.mark Ð true // mark current triangle
4: v Ð t.apex // orient the triangle from its apex
5: if v.mark � false then // C triangle
6: write vertex pvq // encode the geometry of v
7: v.mark Ð true // mark the vertex
8: write symbol pCq // encode the clers code: C
9: t Ð t.right // spiral traversal to the right

10: else if is boundarypt.rightq or t.right.mark then // right triangle visited
11: if is boundarypt.leftq or t.left.mark then // E triangle
12: write symbol pEq // encode the clers code: E
13: check handle ptq // check if it is the left triangle of a Sh triangle
14: repeat
15: if Sstack � H then // end of compression
16: return // exit the external repeat loop
17: t Ð Sstack.pop // pop the S stack
18: until not t.mark // skip left of a handle Sh triangle
19: else // R triangle
20: write symbol pRq // encode the clers code: R
21: check handle ptq // check if it is the left triangle of a Sh triangle
22: t Ð t.left // break in spiral traversal: to the left
23: else if is boundarypt.leftq or t.left.mark then // L triangle
24: write symbol pLq // encode the clers code: L
25: check handle ptq // check if it is the left triangle of a Sh triangle
26: t Ð t.right // spiral traversal to the right
27: else // S triangle
28: write symbol pSq // encode the clers code: S
29: if is boundarypvq then // boundary Sb triangle
30: write boundary ptq // encode boundary
31: t.mark Ð �#S // mark for the handle data
32: else // normal S or handle Sh triangle
33: t.mark Ð #S // mark for the handle data
34: Sstack.push pt.leftq // push the left triangle on the S stack
35: t Ð t.right // spiral traversal to the right
36: until true // infinite loop

30 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

Algorithm 6 wrappb�, Cstackq: decompress the dual trees
1: #2 Ð 0 // initialisation
2: stack Sstack ÐH // stack of the triangles left to S symbols
3: repeat // components loop
4: if b� ¡ 0 then // component with boundary
5: b� Ð b� � 1; t ÐH // first boundary
6: Cstack.push p�#2q // push the boundary triangle for the geometry
7: else // component with an empty boundary
8: t Ð #2 // P triangle
9: Cstack.push ptq // push the first triangle for the zip

10: for all vertices v P Bt do // decode the 3 vertices of the P triangle
11: read vertex pvq // decode the geometry of v
12: t Ð t.right // spiral traversal to the right
13: #2 Ð #2 � 1 // initialisation
14: repeat // decompress one component
15: gluept, #2q // glue the next triangle eventually to the boundary
16: s Ð read symbol pclersq // reads the next symbol
17: if s � C then // C triangle
18: Cstack.push p#2q // push the C triangle for the zip
19: t Ð t.right // orient the new triangle to the right
20: else if s � R then // R triangle
21: t Ð t.left // orient the new triangle to the left
22: tryclose star pt.apexq // eventually zip the right edge
23: else if s � L then // L triangle
24: t Ð t.right // orient the new triangle to the right
25: else if s � S then // S triangle
26: if not t.right.mark then // not a handle or boundary S symbol
27: Sstack.push p#2.leftq // push the S triangle for the next E
28: else if is boundaryp#2q then // boundary triangle
29: Cstack.push p�#2q // push the boundary triangle for the geometry
30: t Ð t.right // orient the new triangle to the right
31: else if s � E then // E triangle
32: tryclose star pt.apexq // eventually zip the right and left edges
33: if Sstack � H then // end of the component
34: break // exits the component loop
35: t Ð Sstack.pop pq // pop the next element of the S stack
36: #2 Ð #2 � 1 // next triangle
37: until true // infinite loop
38: until end of filepclersq // end of the clers stream

RITA Volume XV Número 1 2008 31

3D Compression: from A to Zip a first complete example

Model |#0| |#2| [37, 21] [35] [19] [35]/[19] [37, 21]/[19]
sphere 1 848 926 3.39 3.39 3.45 0.98 0.98
violin 1 508 1 498 3.16 2.21 2.25 0.98 1.41
pig 3 560 1 843 3.26 3.24 3.13 1.03 1.04
rose 3 576 2 346 3.37 2.95 2.64 1.12 1.28
cathedral 1 434 2 868 2.25 1.00 0.19 5.27 11.86
blech 7 938 4 100 3.25 3.18 2.40 1.33 1.35
mask 8 288 4 291 3.19 3.12 1.93 1.62 1.65
skull 22 104 10 952 3.51 3.51 3.30 1.06 1.06
bunny 29 783 15 000 3.36 3.34 1.27 2.62 2.64
terrain 32 768 16 641 3.03 3.00 0.40 7.43 7.51
david 47 753 24 085 3.45 3.85 3.07 1.25 1.12
gargoyle 59 940 30 059 3.28 3.27 2.11 1.55 1.55

Table 2. Comparative results on different models. The sizes are expressed in bit per vertex.

5.5 Decompression algorithms

The decompression is performed in 3 passes, controlled by Algorithm 3: decompress.
The first pass decodes the dual spanning tree (Algorithm 6: wrap), which is further zipped
using the backward sequence of C symbols (Algorithm 4: fast zip). The compression de-
scribed here encodes boundary curves, which improves prediction for the interior. However
this means that the size of the boundary is not known to the decoder at the first pass, and the
geometry must be decoded in a posterior step. This pass could be done at the wrap stage if we
encode the boundaries when they are closed, or if we encode the geometry of the bounding
curves in a separate stream.

6 Performances

We presented in this section the fundamental concepts of connectivity–driven com-
pression. In particular, we focused on an extension of the Edgebreaker algorithm, which
handles manifold surfaces of arbitrary topology. The complexity of the compression and the
decompression are both linear in execution time and memory footprint, independently of the
maximal number of the active elements during the execution. However, the decompression
still requires two passes, which makes it harder to stream.

There are various ways of representing a geometrical object, even for simplicial sur-
faces. For specific type of meshes, some algorithms show better performances than other
ones. This distinction is one of the main shifts from the MPEG compression [17] to the
MPEG–4 one [41], which for example encodes differently human faces than landscapes.
Although it is difficult to distinguish with precision classes of meshes and to predict exactly

32 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

the behaviour of compression algorithms on these, we will try to get an intuition of which
characteristics of a mesh are well suited for connectivity–driven compression schemes, and
in particular for the Edgebreaker.

6.1 Compression Rates

Experimental results for the Edgebreaker are recorded on Table 2 and Figure 16.
We compared with the original Edgebreaker implementation with the Huffman encoding
of [21] and the border handling of [37], and the encoding of [19] with the simple arithmetic
coder of [53]. However, the entropy of [19] is always better than the other implementations
of Edgebreaker, as shown on Figure 16(b). A compression ratio of a few bits per vertex, or
even less, is a general order for efficient connectivity–driven compression schemes.

6.2 Good and bad cases

Topology–dependent applications. For the extended Edgebreaker of [19], the separate
handle data informs directly the application of the topology of the mesh. Many simple pa-
rameterisations, texturing or remeshing applications work only for closed surfaces without
handle. The handle data can be used to call a preprocessing step for simplifying the topology
before using these kind algorithms. For the Edgebreaker, this handle data is not an over-
head, since encoding the handle and boundary S symbols as a true/false code on the clers
string is in the best case logarithmic, which is equivalent to the handle data.

(a) Size of the compressed file vs complexity of the
model.

(b) Entropy vs complexity of the model.

Figure 16. Comparison of the final size and entropy: for the range encoder, those
parameters depends more on the regularity than on the size of the model.

RITA Volume XV Número 1 2008 33

3D Compression: from A to Zip a first complete example

Regular connectivity. The valence coding of [26, 50] encodes particularly well meshes
where the vertices have a uniform valence. This can be obtained by subdivision [52, 6]
or remeshing [12, 13]. Remeshing can be done also to improve the Edgebreaker com-
pression using the Swingwrapper of [40]. Without these regularisations, valence coding
based algorithms have better performance when the connectivity is locally regular, whereas
the Edgebreaker performs better on irregular meshes or meshes with a global regularity,
such as those obtained by subdivision algorithms or with some self–similar connectivity.
Meshes with a very irregular connectivity would be better encoded by enumeration methods
of [43, 44].

Regular geometry. The geometry of the mesh is not directly considered in connectivity–
driven compression, and therefore geometry–based compression will outperform these meth-
ods for the connectivity compression of meshes with a regular geometry. However, the ge-
ometry can be used to predict the connectivity, which works specifically when the geom-
etry is regular. This has been done for the valence coding in [14, 11] and in [32] for the
Edgebreaker.

Figure 17. The Edgebreaker cuts the compressed surface along a curve in the space. An
extrapolation of this curve is used to enhance the parallelogram predictor. The predictor uses

the parallelogram predictor to guess the distance from the last vertex of the curve, and
rotates this estimation according to the approximating curve.

Geometry prediction. Geometry prediction uses already decoded vertices to estimate the
next vertex to be decoded, asserting that the geometry is locally regular. For connectivity–
driven schemes are usually based on the parallelogram predictor of [26]. It can be enhanced
by using more than one parallelogram to estimate the new position, as described in [24]. This
is particularly well adapted to the valence coding since the traversal can be adapted to the
prediction. For the Edgebreaker, the parallelogram can be distorted to adapt to local mean
curvature of the surface, as in [11], or to torsion and curvature of the primal remainder, as
described in [18] and on Figure 17.

34 RITA Volume XV Número 1 2008

3D Compression: from A to Zip a first complete example

Low resource applications. The Edgebreaker uses a deterministic traversal, independent
of geometry considerations. Although this is less flexible for geometry prediction enhance-
ments, it gives a very simple algorithm. Moreover, compared to the valence coding schemes
that needs to maintain sorted active boundaries along compression and decompression, the
Edgebreaker just needs a stack of past S symbols. The Edgebreaker thus requires much
less memory for the execution, and spares a constant sort, which can become expensive.
More generally, connectivity–driven compression schemes are easy to implement and quick
to execute.

7 Next steps

The diversity of images requires a multiplicity of compression programs, since specific
algorithms usually perform better than generic one (such as the popular Zip method), if they
are well adapted. In particular, the simple example of Edgebreaker can be extended in many
ways, to address specific issues of particular applications. Even with the few notions of this
tutorial, it is feasible to improve the state-of-the art in 3D compression. In particular, the
following directions may be promising:

Non–simplicial meshes. Connectivity–driven compression schemes are easier on simplicial
meshes, since the dual graph has a constant valence. Most of the mesh compression algo-
rithms for surfaces can be interpreted as a simplicial encoding preceded by a triangulation of
each face. This triangulation is done in a canonical way from the traversal, and the decoder
just need to know the degree of the triangulated faces. For example, the valence coding can
be extended by encoding simultaneously the vertex valences and the face degrees, as in [14],
and the Edgebreaker codes can be combined in a predictable way using the codes of [51].

Non–manifold meshes. Extending these methods to non–manifold meshes directly is a hard
task. The usual method consists in cutting the non–manifold surface into manifold pieces,
using the techniques of [34], encoding the manifold parts as separate components, and then
encoding the cut operations that were performed. The encoding of cut operations can be
done directly as in the handle data, or more carefully by propagating the curves formed by
the non–manifold edges.

Higher dimensions. For solid meshes, the Edgebreaker compression has been directly ex-
tended to tetrahedral meshes in [48, 22], and the valence coding has been extended in [29].
The principles are the same, but the encoding needs some extra information to complete the
intermediate dimension between the spanning tree and the remainders. This extra information
has necessarily some expensive parts to encode, similar to the handle S symbols that are nec-
essary to glue distant parts of the traversal. Minimising this extra information is an NP–hard

RITA Volume XV Número 1 2008 35

3D Compression: from A to Zip a first complete example

problem, as proved in [20]. For higher dimensions, the combinatory of mesh connectivity
makes it difficult to find a concise set of symbols for coding, or a good statistical model for
them as was done for surfaces in [21]. However, for high codimensions, the connectivity
remains simple while the geometry can be efficiently predicted. Seen from the other side,
this means that for low codimension, geometry–based coding can be very efficient, which is
where isosurface compression outperforms any connectivity–based compression.

Robustness. The Edgebreaker is robust in the sense that it handles general manifold sur-
faces. However, it is not particularly robust with a noisy transmission, where the clers codes
can be altered. In that case, the grammar inherent to these codes can be used to detect trans-
mission errors, but not directly to correct them.

Deformable meshes. For animation purposes, the Edgebreaker can be used directly to
compute the deformed mesh when its connectivity is constant, and using for example [25] to
interpolate the geometry. Local changes in the connectivity can be further encoded using the
explicit identification of vertices and triangles provided by the Edgebreaker, similarly to the
description of [16].

A References

[1] M. F. Deering. Geometry compression. In Siggraph, pages 13–20. ACM, 1995.
[2] J. R. Munkres. Elements of algebraic topology. Addison-Wesley, Menlo Park, 1984.
[3] M. A. Armstrong. Basic topology. McGraw–Hill, London, 1979.
[4] G. Taubin, W. P. Horn, F. Lazarus, and J. Rossignac. Geometry coding and VRML. Proceedings

of the IEEE, 86(6):1228–1243, 1998.
[5] G. Taubin and J. Rossignac. Geometric compression through topological surgery. Transactions

on Graphics, 17(2):84–115, 1998.
[6] L. Velho and D. Zorin. 4–8 subdivision. Computer Aided Geometric Design, 18(5):397–427,

2001. Special issue on Subdivision Techniques.
[7] J. W. Alexander. The combinatorial theory of complexes. Annals of Mathematics, 31:219–320,

1930.
[8] R. W. Hamming. Error-detecting and error-correcting codes. Bell System Technical Journal,

29(2):147–160, 1950.
[9] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27:379–423, 1948.
[10] W. T. Tutte. Graph theory as I have known it. Oxford University Press, New York, 1998.
[11] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-quad mesh codec. In Eurograph-

ics, volume 21. Blackwell, 2002.
[12] P. Alliez, D. Cohen–Steiner, O. Devillers, B. Levy, and M. Desbrun. Anisotropic polygonal

remeshing. In Siggraph. ACM, 2003.

36 RITA Volume XV Número 1 2008

http://java.sun.com/products/java-media/3D/collateral/class_notes/notes/bios.htm
http://math.mit.edu/people/faculty/munkres.html
http://maths.dur.ac.uk/pure/temphome/maamain.html
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10053-72-2326954-0,00.html
http://mesh.brown.edu/taubin/
http://www.lis.inpg.fr/pages_perso/lazarus/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://mesh.brown.edu/taubin/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://w3.impa.br/~lvelho/
http://www.mrl.nyu.edu/~dzorin/
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Alexander.html
http://www.jstor.org/journals/0003486X.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Hamming.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Shannon.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Tutte.html
http://www-scf.usc.edu/~leeh
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.multires.caltech.edu/~mathieu/
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www-sop.inria.fr/geometrica/personnel/David.Cohen-Steiner/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.loria.fr/~levy/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/geometrica/alliez/anisotropic.pdf
ftp://ftp-sop.inria.fr/geometrica/alliez/anisotropic.pdf

3D Compression: from A to Zip a first complete example

[13] P. Alliez, É. Colin de Verdière, O. Devillers, and M. Isenburg. Isotropic surface remeshing. In
Shape Modeling International. IEEE, 2003.

[14] P. Alliez and M. Desbrun. Valence–driven connectivity encoding of 3D meshes. In Eurographics,
pages 480–489. Blackwell, 2001.

[15] P.-M. Gandoin and O. Devillers. Progressive lossless compression of arbitrary simplicial com-
plexes. In Siggraph, volume 21, pages 372–379. ACM, 2002. Siggraph.

[16] A. W. Vieira, T. Lewiner, L. Velho, H. Lopes, and G. Tavares. Stellar mesh simplification using
probabilistic optimization. Computer Graphics Forum, 23(4):825–838, 2004.

[17] D. le Gall. MPEG: a video compression standard for multimedia applications. Communications
of the ACM, 34(4):46–58, 1991.

[18] T. Lewiner, J. Gomes Jr., H. Lopes, and M. Craizer. Curvature and torsion estimators based on
parametric curve fitting. Computers & Graphics, 2005.

[19] T. Lewiner, H. Lopes, J. Rossignac, and A. W. Vieira. Efficient Edgebreaker for surfaces of
arbitrary topology. In Sibgrapi, pages 218–225, Curitiba, Oct. 2004. IEEE.

[20] T. Lewiner, H. Lopes, and G. Tavares. Applications of Forman’s discrete Morse theory to topol-
ogy visualization and mesh compression. Transactions on Visualization and Computer Graphics,
10(5):499–508, 2004.

[21] D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle graphs. In Canadian
Conference on Computational Geometry, pages 146–149, 1999.

[22] A. Szymczak and J. Rossignac. Grow & Fold: compressing the connectivity of tetrahedral
meshes. Computer Aided Design, 32(8/9):527–538, 2000.

[23] A. Moffat, R. Neal, and I. H. Witten. Arithmetic coding revisited. In Data Compression, pages
202–211, 1995.

[24] D. Cohen–Or, R. Cohen, and T. Ironi. Multi–way geometry encoding. Technical report, Tel Aviv
University, 2001.

[25] O. Sorkine, D. Cohen–Or, and S. Toledo. High-pass quantization for mesh encoding. In Sympo-
sium on Geometry Processing, pages 42–51. ACM/Eurographics, 2003.

[26] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface, pages 26–34,
1998.

[27] A. Lempel and J. Ziv. A universal algorithm for sequential data compression. Transactions on
Information Theory, 23(3):337–343, 1977.

[28] J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and
Development, 20:198–203, 1976.

[29] M. Isenburg and P. Alliez. Compressing hexahedral volume meshes. In Pacific Graphics, pages
284–293. IEEE, 2002.

[30] M. Isenburg and J. Snoeyink. Spirale reversi: reverse decoding of the Edgebreaker encoding. In
Canadian Conference on Computational Geometry, pages 247–256, 2000.

[31] M. Li and P. M. B. Vitanyi. An introduction to Kolmogorov complexity and its applications.
Springer, 1997.

[32] V. Coors and J. Rossignac. Delphi: geometry-based connectivity prediction in triangle mesh
compression. The Visual Computer, 20(8–9):507–520, 2004.

RITA Volume XV Número 1 2008 37

http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.di.ens.fr/users/colin/index.html.en
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.cs.unc.edu/~isenburg/
ftp://ftp-sop.inria.fr/geometrica/alliez/isotropic.pdf
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.multires.caltech.edu/~mathieu/
ftp://ftp-sop.inria.fr/geometrica/alliez/eg2001.pdf
http://www-sop.inria.fr/prisme/personnel/gandoin/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
http://www.angelfire.com/moon/awilson/
http://www.carva.org/thomas.lewiner
http://w3.impa.br/~lvelho/
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=fast_stellar_cgf.pdf
http://www.carva.org/thomas.lewiner/openPdf.php?pdffile=fast_stellar_cgf.pdf
http://www.c-cube.net/tecno/mpeg.html
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~craizer
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.angelfire.com/moon/awilson/
http://www.carva.org/thomas.lewiner
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~tavares
http://www.cc.gatech.edu/~kingd/research.html
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.cs.mu.oz.au/~alistair/
http://www.cs.toronto.edu/~radford
http://www.cs.tau.ac.il/~dcor
http://www.cs.tau.ac.il/~dcor/graduate_students/
http://www.cs.tau.ac.il/~talii/
http://www.cs.tau.ac.il/~sorkine/
http://www.cs.tau.ac.il/~dcor
http://www.cs.tau.ac.il/~stoledo/
http://www.cs.technion.ac.il/~costa/
http://www.cs.technion.ac.il/~gotsman
http://www.cs.technion.ac.il/People/Faculty/lempel.html
http://www.ee.technion.ac.il/faculty_e/staff1_eng.asp?staff_id=53
http://www.cs.tut.fi/~rissanen/
http://www.cs.unc.edu/~isenburg/
http://www-sop.inria.fr/geometrica/personnel/alliez/
http://www.cs.unc.edu/~isenburg/
http://www.cs.unc.edu/~snoeyink/
http://www.cs.uwaterloo.ca/~mli/
http://homepages.cwi.nl/~paulv/
http://www.fht-stuttgart.de/fbv/fbvweb/pers/coors/Homepage.htm
http://www.gvu.gatech.edu/people/official/jarek.rossignac/

3D Compression: from A to Zip a first complete example

[33] R. V. L. Hartley. Transmission of information. Bell System Technical Journal, 7:535, 1928.
[34] A. Guéziec, G. Taubin, F. Lazarus, and W. P. Horn. Converting sets of polygons to manifold

surfaces by cutting and stitching. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Visualization.
IEEE, 1998.

[35] J. Rossignac. Edgebreaker: connectivity compression for triangle meshes. Transactions on Visu-
alization and Computer Graphics, 5(1):47–61, 1999.

[36] J. Rossignac, A. Safonova, and A. Szymczak. 3D compression made simple: Edgebreaker on a
corner–table. In Solid Modeling International, pages 278–283. IEEE, 2001.

[37] J. Rossignac and A. Szymczak. Wrap&zip decompression of the connectivity of triangle meshes
compressed with edgebreaker. Computational Geometry, 14(1-3):119–135, 1999.

[38] D. A. Huffman. A method for the construction of minimum redundancy codes. In I.R.E, pages
1098–1102, 1952.

[39] H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the American Insti-
tute of Electrical Engineers, 47:617–644, 1928.

[40] M. Attene, B. Falcidieno, M. Spagnuolo, and J. Rossignac. SwingWrapper: retiling triangle
meshes for better Edgebreaker compression. Transactions on Graphics, 22(4):982–996, 2003.

[41] F. Pereira and T. Ebrahimi. The MPEG–4 Book. Prentice Hall, Upper Saddle River, 2002.
[42] J.-D. Boissonnat and M. Yvinec. Algorithmic geometry. Cambridge University Press, 1998.
[43] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. In ICALP, pages

1080–1094, 2003.
[44] L. Castelli Aleardi and O. Devillers. Canonical triangulation of a graph, with a coding application.

INRIA, 2004.
[45] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
[46] H. Lopes, J. Rossignac, A. Safonova, A. Szymczak, and G. Tavares. Edgebreaker: a simple

compression for surfaces with handles. In C. Hoffman and W. Bronsvort, editors, Solid Modeling
and Applications, pages 289–296, Saarbrücken, 2002. ACM.

[47] H. Lopes, S. Pesco, G. Tavares, M. G. M. Maia, and Á. Xavier. Handlebody representation for
surfaces and its applications to terrain modeling. In Shape Modeling International, volume 9.
IEEE, 2003.

[48] S. Gumhold, S. Guthe, and W. Stras̈er. Tetrahedral mesh compression with the Cut–Border ma-
chine. In Visualization, pages 51–58. IEEE, 1999.

[49] N. A. Gumerov, R. Duraiswami, and E. A. Boroviko. Data structures, optimal choice of param-
eters, and complexity results for generalized multilevel fast multipole methods in d dimensions.
Technical report, University of Maryland, 2003.

[50] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky. Freelence — coding with free va-
lences. In Eurographics, volume 24, pages 469–478. Blackwell, 2005.

[51] B. Kronrod and C. Gotsman. Efficient coding of nontriangular mesh connectivity. Graphical
Models, 63:263–275, 2001.

[52] C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, 1987.
[53] G. Martin. Range encoding: an algorithm for removing redundancy from a digitised message. In

Video & Data Recoding, 1979.
[54] D. Salomon. Data compression: the complete reference. Springer, Berlin, 2000.

38 RITA Volume XV Número 1 2008

http://www.geocities.com/neveyaakov/electro_science/hartley.html
http://www.gueziec.org/
http://mesh.brown.edu/taubin/
http://www.lis.inpg.fr/pages_perso/lazarus/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www-2.cs.cmu.edu/~alla/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.huffmancoding.com/david/scientific.html
http://www.ieee.org/organizations/history_center/legacies/nyquist.html
http://www.ima.ge.cnr.it/ima/personal/attene/PersonalPage/attene.html
http://www.ima.ge.cnr.it/ima/smg/people.html
http://150.145.3.115/ima/personale/frame.php?la=it&su=Spagnuolo
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www.gvu.gatech.edu/~jarek/papers/SwingWrapper.pdf
http://www.gvu.gatech.edu/~jarek/papers/SwingWrapper.pdf
http://www.img.lx.it.pt/~fp/
http://ltswww.epfl.ch/~ebrahimi/
http://www.inria.fr/prisme/personnel/boissonnat/boissonnat-eng.html
http://www.inria.fr/geometrica/personnel/yvinec/yvinec-eng.html
http://www.liafa.jussieu.fr/~poulalho/
http://www.lix.polytechnique.fr/Labo/Gilles.Schaeffer/
http://www.lix.polytechnique.fr/~amturing/
http://www-sop.inria.fr/geometrica/personnel/devillers/index.html.en
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5231.pdf
http://www.math.cornell.edu/~hatcher/
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.mat.puc-rio.br/~lopes
http://www.gvu.gatech.edu/people/official/jarek.rossignac/
http://www-2.cs.cmu.edu/~alla/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/
http://www.mat.puc-rio.br/~tavares
http://www.mat.puc-rio.br/~lopes
http://www.mat.puc-rio.br/~sinesio
http://www.mat.puc-rio.br/~tavares
http://www.cetuc.puc-rio.br/sistemas/grivet/grivet.htm
http://www.mpi-sb.mpg.de/~sgumhold/
http://www.gris.uni-tuebingen.de/staff/Stefan_Guthe_en.html
http://www.gris.uni-tuebingen.de/~strasser/
http://www.umiacs.umd.edu/~gumerov
http://www.umiacs.umd.edu/~ramani
http://www.umiacs.umd.edu/~yab
http://www.zib.de/kaelberer/
http://www.zib.de/polthier/
http://www.zib.de/reitebuch/
http://www.zib.de/wardetzky/
http://www.cs.technion.ac.il/~gotsman

	Introduction
	Information Representation
	Coding
	Information Theory
	Levels of Information

	Meshes and Geometry
	Simplicial Complexes
	Pure Simplicial Complexes
	Simplicial Manifolds

	Connectivity--Driven Compression
	Principles
	Primal or dual remainders
	Topological Singularities

	The Edgebreaker example
	CLERS encoding
	Fast decompression
	Topology encoding
	Compression algorithms
	Decompression algorithms

	Performances
	Compression Rates
	Good and bad cases

	Next steps
	References

