
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 25, Num. 04 (2018) 28-42

RESEARCH ARTICLE

Algorithms for the power-p Steiner tree problem in the
Euclidean plane
Algoritmos para o problema de Steiner no plano Euclidiano com função objetivo do tipo
‘power-p’

Christina Burt1*, Charl Ras1, Alysson M. Costa1

Abstract: We study the problem of constructing minimum power-p Euclidean k-Steiner trees in the plane. The
problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum
spanning tree problem, at most k additional nodes (Steiner points) may be introduced anywhere in the plane.
The cost of an edge is its length to the power of p (where p ≥ 1), and the cost of a network is the sum of all
edge costs. We propose two heuristics: a “beaded” minimum spanning tree heuristic; and a heuristic which
alternates between minimum spanning tree construction and a local fixed topology minimisation procedure
for locating the Steiner points. We show that the performance ratio κ of the beaded-MST heuristic satisfies√

3
p−1

(1+21−p)≤ κ ≤ 3(2p−1). We then provide two mixed-integer nonlinear programming formulations for the
problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid
inequalities with warm-starting and preprocessing to obtain computational improvements for the p = 2 case.
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Resumo: Este artigo estuda o problema de Steiner no plano com função objetivo do tipo power-p. Deseja-se
obter a árvore de mı́nimo custo que visita todos os nós terminais, permitindo-se a inclusão de um máximo
de k nós adicionais (nós de Steiner) em qualquer posição do plano. O custo de uma aresta é dado por
seu comprimento elevado à potência p(p ≥ 1), e o custo da rede é dado pela soma dos custos das arestas
selecionadas. Duas heurı́sticas são propostas: uma heurı́stica que usa uma árvore de custo mı́nimo e insere
pontos de Steiner nas arestas selecionadas (beaded-MST) e uma segunda heurı́stica que alterna entre a
construção de árvores de custo mı́nimo e um problema de minimização de custo com topologia fixa. Mostra-se
que a razão de performance κ da heurı́stica ‘beaded-MST’ satisfaz

√
3

p−1
(1+21−p)≤ κ ≤ 3(2p−1). Em seguida,

duas formulações não lineares com variáveis binárias são propostas para o problema. Para estas formulações,
diversas desigualdades válidas são propostas, baseadas em propriedades geométricas do problema. As
formulações são enriquecidas com estas desigualdades e com procedimentos de pre-processamento para a
obtenção de soluções para o caso p = 2.
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1. Introduction
The geometric Steiner tree problem involves the fundamental
task of interconnecting a given set of points in the cheapest
possible way. Additional points, called Steiner points, may
be introduced anywhere in the ambient space, which makes
the model significantly more general than the well-known
minimum spanning tree problem.

Steiner trees are the flagship model for many network-

design applications. Since the 1960’s, researchers from around
the world have applied a concerted effort in order to produce
ever faster algorithms for constructing optimal Steiner trees
[1, 2, 3, 4, 5]. Every incremental improvement in algorith-
mic speed, efficiency or stability has had a tangible impact
on industry—a case in point being the design of integrated
circuits, where algorithmic developments have contributed
to the exponential growth in the complexity-to-size ratio of
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microprocessors [6].
Steiner trees were originally employed as a model for

designing interstate telecommunication networks [7]. Since
then, they have been successfully applied to the modelling
of phylogenetic trees [8, 9], wireless sensor networks [10],
underground mining networks [11], and optical fibre networks
[12]. Consequently, there exists a collaborative drive within
academia to produce algorithms that are faster, can handle
more general definitions of network cost, and are numerically
stable.

The fastest exact geometric Steiner tree algorithm to date,
namely GeoSteiner [13], can comfortably handle networks
with a few thousand nodes, but suffers from a significant short-
coming through the assumption that the number of Steiner
points is unbounded. This premise leads to simpler geometry,
but at the cost of limiting the range of applications that can
utilise the algorithm. Moreover, even though in practice the
cost of a network can be measured in many different ways,
most Steiner tree algorithms, including GeoSteiner, assume
that the network cost is calculated by adding up the lengths of
the edges. Alternative algorithms—utilising alternative cost
functions—have been developed (eg. [14, 15]) in order to
address this shortcoming, however these algorithms are not
nearly as fast or as accurate as GeoSteiner, and some may be
difficult to implement directly.

In practice, Steiner points correspond to network junctions,
which usually come at a cost; for instance, the set-up and
maintenance costs associated with hub installation. More
realistic models therefore either incorporate node costs or
bound the number of Steiner points explicitly. In both cases,
much of the elegant geometry that GeoSteiner exploits (such
as the fact that all angles at Steiner points are 120◦) is lost.
The construction of Steiner trees with a bounded number of
Steiner points therefore calls for a new approach. In this paper,
we explore solutions to these issues by explicitly bounding the
number of Steiner points, and extending the notion of network
cost to incorporate any power-p, p≥ 1, of Euclidean distance.

We formally define the problem as follows. Let T be any
tree connecting a set of points in the plane. For any p≥ 1 the
cost of T is defined as

‖T‖= ∑
xy∈E(T )

‖x− y‖p,

where E(T ) is the edge-set of T . Now let Y be a set of n
given points, called terminals, in the Euclidean plane and
let k ≥ 0 be a given integer. In the power-p Euclidean k-
Steiner tree problem we are required to find a set S ⊂ R2 of
cardinality at most k and a tree T (S) spanning Y ∪ S such
that ‖T (S)‖ is minimised. We refer to an optimal T (S) as
a (p,k)-Steiner minimal tree, or just (p,k)-SMT. Note that
classical Euclidean Steiner trees, where the degree of every
Steiner point is 3, have at most n−2 Steiner points. Therefore
the power-p Euclidean k-Steiner tree problem generalises
the classical Euclidean Steiner tree problem (set p = 1 and
k = n− 2). Throughout this paper we will denote the set

of given terminals by Y = {y1, ...,yn} and the set of Steiner
points by S = {yn+1, ...,yn+k}.

The key contributions of this paper are the design of a fast
and accurate new heuristic; a theoretical performance analysis
of the beaded minimum spanning tree heuristic (which has
previously been applied to the bottleneck Steiner tree problem
[15]); and the proposal of two non-linear mixed-integer formu-
lations which are strengthened by valid inequalities derived
from geometric properties. Most of these properties relate
to the connection between minimum spanning trees and cer-
tain proximity structures, such as Voronoi diagrams, Gabriel
graphs and relative neighbourhood graphs. We also present
a highly effective preprocessing routine that is able to signif-
icantly reduce the number of variables in the formulations.
Finally, we present extensive computational experiments for
our models and algorithms with p = 2.

In Section 2.1, we show that the beaded-MST heuristic
has a performance ratio of at least

√
3

p−1
(1+ 21−p) and at

most 3(2p−1). This immediately leads to a lower-bound for
the cost of a (p,k)-SMT on Y : we construct the beaded-MST
on Y and then set the lower bound to 21−p

3 ‖Tbead‖, where Tbead
is the beaded-MST. Lower bounds are useful for estimating
the quality of heuristics, and can be utilised in tree search
algorithms to prune branches that will not lead to optimal
solutions.

In our second heuristic (Section 2.2), we find locally min-
imal solutions to the power-p Steiner tree problem, where a
locally minimal solution is defined as a tree T spanning Y and
a set of k Steiner points S, such that T is an MST and is a
cheapest tree (spanning Y and a set of k Steiner points) with
the same topology as T . The heuristic finds locally minimal
solutions by iteratively and randomly deploying Steiner points
and then alternating between constructing an MST topology
and locating the optimal Steiner point locations for that topol-
ogy. Our experimental results for the case p = 2 show that
this heuristic is very effective at finding the optimal solution,
is fast, and can find good solutions for problems significantly
larger than our exact approaches. We provide experimental
results of both heuristics in Section 2.3.

In Section 3, we present two mixed-integer nonlinear pro-
gramming (MINLP) models. We solve these models using
MINLP and mixed-integer quadratically constrained (MIQCP)
solvers for the case p = 2. In both models, convergence speed
is improved with the use of warm-starts; preprocessing to
eliminate O(n2) edge variables; and translations of several
geometric properties into valid inequalities.

Since there are no alternative algorithms in the literature
for geometric power-p Steiner trees for p > 1, our compu-
tational comparison in Section 4 focuses on our heuristics
and variations on our integer programming formulations. We
perform an empirical study on the effect that various improve-
ments have on the efficiency of our approach. The algorithms
we present are valid for all p≥ 1, however, in terms of imple-
mentation and comparison, we will focus on the case p = 2
only.
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2. Heuristics
2.1 The beaded minimum spanning tree heuristic

for p > 1
A beaded-MST [15] is a feasible solution to the power-p
Euclidean k-Steiner tree problem for p > 1, constructed as
follows. Let T ′ be a minimum spanning tree on the complete
graph induced by the set of terminals Y . We add k degree-two
Steiner points to T ′ by subdividing edges of T ′. The first
Steiner point is placed at the mid-point of a longest edge of T ′.
Now suppose that t Steiner points have been added to T ′. To
add the t +1th Steiner point we proceed as follows. For every
edge e of the original MST on Y (note that e corresponds either
to an edge of T or a path through degree-2 Steiner points in T ),
let `(e) = ‖e‖

b(e)+1 , where b(e) is the number of Steiner points
(beads) on edge e. Let e′ = argmax `(e). The t +1th Steiner
point will be added to edge e′. We do this by removing all
current Steiner points on the path of T ′ corresponding to e′

and then adding them back, along with the new Steiner point,
so that the Steiner points are equally spaced on e′.

Algorithm 1: Beaded MST heuristic
input :Terminal set Y , number of Steiner points k
output :A tree Tbead(Y ) spanning Y and at most k

additional points
1 Let T be a minimum spanning tree on the complete

graph induced by the set of terminals Y .
2 Let e1, ...,eq−1 be the edges of T
3 Compute l(ei) for each ei
4 Sort the edges in non-decreasing order of l(·)
5 Add a bead to ei of largest l(·) value
6 Update l(ei)
7 Relocate the beads on ei so that they are equally spaced
8 Reset ei’s position in the ordering
9 Repeat Steps 5-8 until k beads have been added

10 Return Tbead(Y )

Let Tbead(Y ) be a beaded-MST on Y and let T (Y ) be an
optimal solution to the power-p Euclidean k-Steiner tree prob-

lem on Y . Let κ = supY
‖Tbead(Y )‖
‖T (Y )‖ . We require the following

lemma.

Lemma 1 For any non-negative real numbers c1,c2 it holds
that (c1 + c2)

p ≤ 2p−1(cp
1 + cp

2).

Proof. Since p> 1 the function g(u) = up is convex when u≥
0. Therefore for any u1,u2 ≥ 0 it follows that g

(
u1 +u2

2

)
≤

1
2
(g(u1)+g(u2)). The result follows.

Theorem 2 κ ≤ 2p +2p−1 = 3 ·2p−1.

Proof. We only need to consider full trees, where every termi-
nal is of degree 1 and every Steiner point is of degree at least

a1 a2 a3 a4 a5

s

P

Figure 1. Base case for proof of Theorem 2
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Figure 2. Inductive step for proof of Theorem 2

2. Let T be an optimal full Steiner tree rooted at a Steiner
point s. The height of T is the maximum number of edges in a
path from s to a terminal. We employ induction on the height
h of trees. In the base case with h = 1 the tree T has exactly
one Steiner point s (see Figure 1 where black filled circles are
terminals and the open circle is a Steiner point). Let the edges
of T be a1, ...,at joining s to vertices y1, ...,yt respectively. We
replace each edge ai with edge yiyi+1, 1≤ i < t and let T ′ be
the resultant tree. Let T ′′ be the tree that results by removing
edge syt from T ′. Observe that T ′′ is a beaded spanning tree
on the terminals of T , that ‖T‖= ‖a1‖p+ ...+‖at‖p, and that

‖T ′′‖= ‖y1y2‖p + ...+‖yt−1yt‖p

≤ (‖a1‖+‖a2‖)p + ...+(‖at−1‖+‖at‖)p

≤ 2p−1‖a1‖p +2p‖a2‖p + ...

+2p‖at−1‖p +2p−1‖at‖p

≤ 2p‖T‖
≤ (2p +2p−1)‖T‖.

Therefore the result follows in the base case. Note also that
T ′ has a path P := at with the property that ‖T ′′‖+2p‖P‖ ≤
(2p +2p−1)‖T‖.

Suppose that for every optimal full tree T̃ of height less
than h > 1 the following property holds: there exists a tree
T̃ ′ spanning Y consisting of a beaded spanning tree T̃ ′′ and a
path P̃ connecting the root of T̃ to one of its terminals such
that ‖T̃ ′′‖+2p‖P̃‖ ≤ (2p+2p−1)‖T̃‖. Suppose now that T is
an optimal fulll Steiner tree of height h > 1 rooted at a Steiner
point s with incident edges a1, ...,at , and suppose that when
we remove s we get t subtrees T1, ...,Tt rooted at Steiner points
s1, ...,st respectively (see Figure 2 where, once again, black
circles are terminals). Let T ′1 , ...,T

′
t be the respective subtrees

guaranteed by the inductive hypothesis, where T ′i = T ′′i ∪Pi
and Pi is a path connecting si to terminal yi in Ti. For each
i let d′i be the distance ‖si− yi‖. Without loss of generality
we assume that d′i ≥ d′i+1 for each i < t. For every 1≤ i < t
we now replace path Pi by edge yiyi+1 and place the Steiner
points of Pi as beads on yiyi+1 (where the beads are spaced
evenly). Let T ′′ be the resultant tree.
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Note that since d′i ≥ d′i+1 and by the triangle inequality,
the cost of beaded edge yiyi+1 is at most 2p‖Pi‖+ (‖ai‖+
‖ai+1‖)p ≤ 2p‖Pi‖+2p−1(‖ai‖p +‖ai+1‖p). Path Pt and its
Steiner points are unused and, together with edge at , forms
the new path P for T . Finally,

‖T ′′‖+2p‖P‖ ≤∑
i≤t
‖T ′′i ‖+2p

∑
i<t
‖Pi‖+

∑
i<t

2p−1(‖ai‖p +‖ai+1‖p)+2p‖P‖

≤ (2p +2p−1)∑
i<t
‖Ti‖+‖T ′′t ‖+

∑
i<t

2p‖ai‖p +2p−1‖at‖p +2p(‖Pt‖+‖at‖p)

≤ (2p +2p−1)∑
i≤t
‖Ti‖+(2p +2p−1)∑

i≤t
‖ai‖p

= (2p +2p−1)‖T‖,

where the second inequality follows from the inductive hy-
pothesis. Therefore ‖T ′′‖≤ (2p+2p−1)‖T‖, and we are done.

Corollary 3 A lower bound on the cost of a (p,k)-SMT on Y
is 21−p

3 ‖Tbead‖.

Lastly we will construct a lower bound for κ . Let Y be
three terminals at the corners of an equilateral triangle of side
length

√
3. It is easy to show that for k = 1 the optimal cost

‖T‖= 3, since the Steiner point will be located at the centre of

the triangle. On the other hand, ‖Tbead‖=
√

3
p
+2
(√

3
2

)p
=

√
3

p (
1+21−p

)
. The next result now follows immediately:

Theorem 4 κ ≥
√

3
p−2 (

1+21−p
)

2.2 The iterative alternating heuristic
The problem of finding the optimal locations of the Steiner
points with respect to a topology is called the fixed topology
Steiner tree problem. In this context, the topology refers to the
connections between all combinations of terminal and Steiner
nodes. Let T (S) be the topology of a tree spanning Y and a
set S of k variable Steiner points. Let the edge-set of T be
denoted by E(T ). Then the fixed topology problem for T
solves the unconstrained problem

min
S
‖T (S)‖

where ‖T (S)‖ := ∑
e∈E(T )

‖e‖p. Since p ≥ 1 and norms are

convex functions it follows that ‖T (S)‖ is convex. Note that
‖T (S)‖ can be expressed as

‖T (S)‖= ∑
yi,y j∈Y∪S

wi j‖yi− y j‖p, (1)

where each wi j is 0 if i j is not a connection in T (S), and 1
otherwise.

Solving the fixed topology problem when p > 1 can there-
fore be very efficiently achieved by Newton or gradient-based
methods, since in this case ‖T (S)‖ is strictly convex. Effi-
cient interior point methods [16] exist for solving the case
p = 1. When p = 2 the fixed topology problem can be exactly
solved in linear time by solving the system of linear equations
that results from the first-order conditions on the optimal lo-
cation of each Steiner point with respect to its neighbours.
In particular, if Steiner point s is adjacent to nodes y1, ...,yt ,

for some t > 1, in an optimal tree then
t

∑
i=1
‖s− yi‖2 must

be a minimum. The first-order condition for s is therefore

∑
t
i=1(s− yi) = 0 or s =

1
t

t

∑
i=1

yi. In other words, s is located at

the centroid of its neighbours.
The details of the heuristic are provided next.

Algorithm 2: Iterative Alternating Heuristic
input :Terminal set Y , number of Steiner points k, and

number of iterations c > 0
output :A tree TIAH spanning Y and at most k

additional points
1 while i < c do
2 Generate a set S′ of k random points (from a

uniform probability distribution) inside the convex
hull of Y

3 repeat
4 Construct a minimum spanning tree on Y ∪S′,

and denote its topology by T (S′)
5 Locate the optimal positions of the Steiner

points with respect to T (S′), resulting in an
embedded tree T ′

6 Let S′ be the locations of the Steiner points of
T ′

7 until the topology of T (S′) no longer changes
8 i := i+1
9 Let TIAH be the cheapest tree found

The integer c should be selected based on the values of
n and k. We do not have a strong theoretical basis for how
to choose c in order to achieve a required degree of accuracy.
However, we claim that each Repeat loop in Line 3 finds a
locally minimal solution to the problem, and it is possible
to place a bound on the number of distinct locally minimal
solutions. This insight may be used as a rough guide for
choosing c.

Recall that a locally minimal solution is defined as a tree
T spanning Y and a set of k Steiner points S, such that T is an
MST and is a cheapest tree (spanning Y and a set of k Steiner
points) with the same topology as T . Therefore, in a locally
minimal solution, each Steiner point is optimally located with
respect to its neighbours. To prove the claim, note that the
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Repeat loop terminates when the topology of T (S′) does not
change when an MST is calculated for the current Steiner
point locations, S′, at Line 4. Since S′ is the optimal set
of Steiner point locations for the topology of T (S′) in the
previous iteration of the loop, the set S′ will also be optimal
in the current iteration. Therefore both conditions for local
minimality are satisfied. On the other hand, note that if the
set S′ in the current iteration is different than in the previous
iteration, then there must be a strict decrease in the cost of the
embedded tree T ′. But there are a finite number of distinct
minimum spanning trees on the set Y with k Steiner points
(there are at most O(kk−2n2k), see [17]), therefore the Repeat
loop must terminate.

We have found that on average it requires very few iter-
ations of the Repeat loop in order to find a locally minimal
solution; see Table 1 in the next section.

2.3 Heuristic Experiments
In Table 1 we present the computational results for the two
heuristics on a validation test set. We generated the test set
randomly, by selecting x and y from a uniform distribution
of continuous numbers in the range [0,100], to form an (x,y)
pair. Both heuristics can efficiently solve problems that, as
we will see in Section 4, are too challenging for a mathemat-
ical programming approach. We have chosen c = 100,000
iterations for the iterative alternating heuristic, which gives a
maximum run time of less than 350 seconds for each of the
instances. We utilised the exact approach described in Section
3 to obtain a bound on the solution, thereby validating that
the iterative-alternating heuristic finds the optimal solution for
the first 8 instances. For the remaining instances, the exact ap-
proach did not converge on the optimal solution and therefore
we were unable to validate the iterative-alternating heuristic
on these instances.

The quality of the beaded-MST heuristic is also very good:
in some cases it finds the optimal solution and it has a per-
formance low of 13.2% worse than the iterative-alternating
heuristic. In Section 4, we will compare the performance
of the beaded-MST with the exact solutions found from our
MINLP algorithm.

3. Exact approach

In this section, we begin by providing two mixed integer
nonlinear programming models for the power-p Euclidean
k-Steiner tree problem. We have two main models, both of
which are directed formulations employing single commodity
flow in order to ensure connectivity of the network. Our
first model, Model N, has a nonlinear objective function with
linear constraints, whereas our second model, Model Q, is a
convex formulation with nonlinear constraints. We achieve
conversion from N to Q by introducing bound variables di j,
each of which is bounded below by the cost of edge yiy j, as
was similarly performed in [18] for the classical Steiner tree
problem.

We then present a simple yet powerful preprocessing step
that can be employed in either Model N or Model Q. Lastly,
in Section 3.3, we derive valid inequalities based on geometric
properties of optimal k-Steiner trees.

3.1 Models
We define the index sets as follows. The terminal nodes
have indices: IY := {1, ...,n}; the Steiner nodes have indices
IS := {n+1, ...,n+k}. Let I := {1, ...,n+k} represent the
full set of terminal and Steiner node indices. In both of the
models in this section, we utilise the following variables. Let
nodes y1 . . .yn be the position of terminal nodes and nodes
yn+1 . . .yn+k be the position of Steiner nodes. We represent
the known (fixed) position of a terminal node yi by yi. The
topology of the network is captured by binary variables wi j,
which indicate if edge yiy j is active in the network, or not.
We enforce a spanning tree topology through the use of a
single-commodity flow formulation. Here, the flow variables
will represent the quantity of flow from the arbitrarily chosen
root node to the leaf nodes, where the flow leaving the root
node is n+k−1 and the flow arriving into leaf nodes is 1. The
flow along each edge, gi j, will reduce by 1 at every node as
the branch is traced to the leaf node. These flow variables are
implicitly integer, and therefore can be defined as continuous
variables. That is, even if they are defined as continuous
variables, the solutions are guaranteed to be integer.

We obtain the following mixed-integer nonlinear formula-
tion:

N : min ∑
i, j∈I

wi j
∣∣∣∣yi− y j

∣∣∣∣p
s.t. ∑

j∈I
w ji = 1, i ∈I , i 6= 1,

(2)

∑
j∈I

g ji− ∑
j∈I, j 6=1

gi j = 1, i ∈I , i 6= 1,

(3)

gi j ≤ (n+ k−1)wi j, i, j ∈I , (4)

yi = yi, i ∈IY , (5)

wi j ∈ {0,1}, i, j ∈I ,

gi j ∈ R≥0, i, j ∈I ,

yi ∈ R2, i ∈I .

Constraint (2) ensures that every node (except the root node
y1) is visited by one incoming arc. Constraints (3) and (4)
are single-commodity flow constraints that ensure that every
visited node must receive one unit of flow, thus eliminating
subcycles. Constraint (5) fixes the positions of the known
terminal nodes.

Note that the objective function is nonlinear and poten-
tially non-convex. Therefore a global mixed-integer nonlin-
ear programming solver such as eg., SCIP [19] should be
employed. However, we will reformulate the problem into
convex form (Model Q below) so that state-of-the-art MIQCP
solvers can be used for the p = 2 case.
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Table 1. The computational results of the beaded-MST and iterative-alternating heuristic on 24 random instances. We provide
the objective value and run-time (seconds) for the iterative-alternating heuristic for 100000 iterations, along with the average
number of global iterations and sub-iterations (local) required to obtain the optimal solution over 10 experiments. We provide
the best known solution from the exact approaches; optimal solutions are in bold, while the remaining solutions are best bounds
obtained after 3600s. Where the iterative-alternating solution is validated by the exact approaches, it is in bold.

instance beaded-MST iterative-alternating best bound sol ratio
|S| |T | obj time obj time global it local it beaded-MST

iter-alter

1 10 4793.054 0.004 4651.949 45.300 5 2.764 4651.951 1.030
1 12 5266.108 0.005 5023.772 44.660 16 2.677 5023.772 1.048
1 15 4993.727 0.008 4863.787 47.750 13 2.762 4863.787 1.027
1 20 6064.220 0.014 6064.221 45.650 11 2.380 6064.220 1.000
2 15 5156.965 0.007 5132.455 66.390 376 2.712 5132.452 1.005
2 20 2987.430 0.015 2893.793 84.240 289 3.308 2893.792 1.032
3 10 5852.579 0.004 5852.579 80.500 29 2.617 5852.577 1.000
3 12 5438.205 0.005 5235.981 90.200 175 2.979 5235.978 1.039
3 20 3787.999 0.013 3667.901 107.030 – 3.297 2938.586 1.033
4 15 4944.758 0.007 4772.472 114.410 – 3.038 3204.118 1.036
4 20 4062.861 0.015 4000.243 132.460 – 3.421 1902.062 1.016
5 10 3647.391 0.003 3362.766 150.670 – 3.440 644.604 1.085
5 12 2531.375 0.005 2505.406 150.220 – 3.434 460.447 1.010
5 20 4455.516 0.014 4324.814 153.810 – 3.393 659.754 1.030
6 12 3387.858 0.006 3244.279 178.400 – 3.574 0.000 1.044
6 15 4812.687 0.007 4777.163 158.840 – 3.126 0.000 1.007
7 10 2083.748 0.003 1841.416 228.150 – 3.930 0.000 1.132
8 12 3540.096 0.005 3300.603 233.390 – 3.650 0.000 1.073
8 15 3357.239 0.017 3020.171 237.290 – 3.686 0.000 1.112

10 10 1557.291 0.004 1557.291 324.400 – 4.247 0.000 1.000
10 12 2636.205 0.005 2484.384 305.780 – 3.975 0.000 1.061
10 15 3644.812 0.007 3427.932 284.780 – 3.617 0.000 1.063
12 12 2899.817 0.005 2760.644 345.390 – 3.751 0.000 1.050

As in [18], we introduce a new variable, di j for each edge
yiy j. Since distance is symmetric we only introduce these
variables for indices i < j. Let M = max

i, j∈IY
‖yi− y j‖p and let

w′i j = wi j +w ji for all i, j. We therefore obtain the following
mixed-integer convex formulation:

Q : min ∑
i, j∈I ,i< j

di j

s.t. ‖yi− y j‖p− (1−w′i j)M ≤ di j, i, j ∈I , i < j, (6)

∑
j∈I

w ji = 1, i ∈I , i 6= 1, (7)

∑
j∈I

g ji− ∑
j∈I, j 6=1

gi j = 1, i ∈I , i 6= 1, (8)

gi j ≤ (n+ k−1)wi j, i, j ∈I , (9)

yi = yi, i ∈IY , (10)

wi j ∈ {0,1}, i, j ∈I ,

gi j ∈ R≥0, i, j ∈I ,

di j ∈ R≥0, i, j ∈I , i < j,

yi ∈ R2, i ∈I .

Note that Model Q is an MIQCP for p = 2.

3.2 Preprocessing
Here we describe a method for significantly reducing the num-
ber of wi j variables for implementations of the above models.

Let T be a (p,k)-SMT on Y with optimal Steiner point set
S. We assume without loss of generality that the MST on Y ,
say MST(Y ), is unique, since otherwise a small perturbation
in the location of the terminals can create a terminal-set with
this property. An edge in T joining two terminals is called a
terminal edge.

The following theorem follows directly from arguments
in [17].

Theorem 5 All terminal edges of T are edges of MST(Y ).

A consequence of this is that we can remove any yiy j edge
for i, j ∈IY that is not in the MST of Y . That is, the number
of admissible terminal to terminal edges drops from O(n2)
to O(n). Let AY be the set of admissable arcs, defined as
follows: AY := {(i, j) : yiy j is an edge of MST(Y )}.

3.3 Valid inequalities
An optimal k-Steiner tree is an MST on its entire set of nodes,
and this fact leads to a number of geometric restrictions on
optimal trees. In this section, we derive valid inequalities
corresponding to these restrictions, which can be added to
models N and Q with the aim of improved computational
efficiency. Some of our inequalities are nonlinear and non-
convex, and therefore we also derive “relaxed” versions of the
inequalities which are linear.
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Some basic valid inequalities for both the N and Q models
include:

∑
i, j∈I

wi j = n+ k−1, (11)

since there must be exactly n+ k−1 edges in a spanning tree
on Y ∪S, and

w′i j := wi j +w ji ≤ 1, i, j ∈I . (12)

We will use the notation v = (v[1],v[2]) for any vector
v ∈ R2. The following three inequalities follow from the fact
that in an optimal k-Steiner tree all Steiner points lie in the
convex hull of the set of terminals:

yi[1]≤ max
j∈IY

y j[1], i ∈IS, (13)

yi[2]≤ max
j∈IY

y j[2], i ∈IS, (14)

and

‖yi− m̄‖2 ≤ max
j∈IY
‖y j− m̄‖2, i ∈IS, (15)

where m̄ can be chosen as any point in the convex hull of the
terminals. This inequality simply says that any Steiner point
must be inside the disk centred at m̄ with radius equal to the
distance to the farthest terminal from m̄. We will choose m̄ to
be the centroid of the terminal nodes.

We also implement a set of stronger (but more numerous)
linear inequalities by adding an inequality directly for each
edge of the convex hull of Y . (16)

Finally, we implement the following symmetry-breaking
constraints:

yi[2]≤ yi+1[2] i ∈IS\{n+ k}. (17)

The remaining valid inequalities arise from geometric
observations.

Angle Inequalities
A basic geometric property of planar Euclidean minimum
spanning trees is that the angle between any pair of adjacent
edges is at least 60◦. We use this fact to create a new family
of valid inequalities as follows. Consider any two nodes yi,y j,
i, j ∈ I and let ys be a Steiner point. If yi and y j are adjacent
to ys in T then ys lies in one of the two 60◦ circles passing
through yi and y j (see the first subfigure of Figure 3).

Let ri j be the radius of each of the two circles. Then ri j =

‖yi− y j‖/
√

3. The centres of the two circles, ρi j1 and ρi j2
can be calculated using basic trigonometry, and are constant
when yi and y j are terminals. Using this information we create
(nonlinear) valid inequalities as follows:

α1

α3

yi

yj

60◦

ρij1

ρij2

α1

α2

α4

α3

yi

yj

y∗j

y∗i

Figure 3. The Angle Inequalities

Let zi js = 3− ‖ys−ρi j1‖p

r2
i j

and let z′i js = 3− ‖ys−ρi j2‖p

r2
i j

.

If ys is inside or on the boundary of the circle with centre ρi j1
then zi js ∈ [2,3], otherwise zi js ∈ (−∞,2). Similarly for z′i js.
We therefore obtain the following valid inequalities.

w′is +w′js ≤max{zi js,z′i js,1} ∀ i, j ∈I ,s ∈IS.

(18)

Constraint (18) cannot be implemented in the MIQCP
solver, even for p = 2. However, it is possible to provide
simpler (but more numerous) inequalities which are linear
when yi and y j are terminals. Consider the bounding rectangle
of the two 60◦ circles for nodes yi,y j, as depicted in the second
subfigure of Figure 3. Let α1, ...,α4 be the four corners of
the rectangle (the choice of these labels will depend on the
orientation).

Let qi j = y j−yi, let y∗i and y∗j be the intersection points of
the line containing yi,y j and the bounding rectangle. We can

then show that δi j := ‖y∗j − y j‖= ‖y∗i − yi‖=
(

2−
√

3
2
√

3

)
‖q ji‖.

It is also easy to show that ‖α1− y∗j‖ = ‖α2− y∗j‖ = ‖α3−
y∗i ‖= ‖α4− y∗i ‖=

√
3

2 ‖qi j‖.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 4 • p.34/42 • 2018



Algorithms for the power-p Steiner tree problem in the Euclidean plane

Let R be the 90◦ counterclockwise rotation matrix R =
[0,−1;1,0], in other words, R(x,y) = (−y,x) for any vec-
tor (x,y). We then have α1 = y j +δi j

qi j
‖qi j‖ +

√
3

2 ‖qi j‖R qi j
‖qi j‖ =

y j+
(

2−
√

3
2
√

3

)
qi j+

√
3

2 Rqi j. Similarly, α2 = y j+
(

2−
√

3
2
√

3

)
qi j−

√
3

2 Rqi j, α3 = yi+
(

2−
√

3
2
√

3

)
q ji+

√
3

2 Rq ji, α4 = yi+
(

2−
√

3
2
√

3

)
q ji

−
√

3
2 Rq ji.

For any two points v1,v2 let y = L(v1,v2,x) be the equa-
tion of the line passing through v1,v2, where x,y are variable
scalars. In other words L(v1,v2,x)= (x−v1[1])

(
v2[2]−v1[2]
v2[1]−v1[1]

)
+

v1[2]. Now, if ys is adjacent to both yi and y j then w′is +w′js =
2, otherwise w′is +w′js < 2. We set M′ = (2+ ε)max

i, j∈I
‖yi−

y j‖p, where ε = 0.1. Therefore, we obtain the following
inequalities:

ys[2]−L(α1,α2,ys[1])≤−M′(w′is +w′js−2) i, j ∈I ,s ∈IS,

ys[2]−L(α1,α4,ys[1])≤−M′(w′is +w′js−2) i, j ∈I ,s ∈IS,

ys[2]−L(α2,α3,ys[1])≥M′(w′is +w′js−2) i, j ∈I ,s ∈IS,

ys[2]−L(α3,α4,ys[1])≥M′(w′is +w′js−2) i, j ∈I ,s ∈IS.

(19)

While these inequalities are valid for all i, j ∈I , to ensure
linearity we only implement them for (i, j) ∈IY .

Centroid Equalities for p = 2
For the case of p = 2, every Steiner point in an optimal tree is
at the centroid (or centre of mass) of its neighbours. That is,

ys =

∑
i∈I

w′isyi

∑
i∈I

w′is
for all s ∈IS.

Re-arranging, we obtain

ys ∑
i∈I

w′is = ∑
∈I

w′isyi ∀ s ∈IS. (20)

Degree Inequalities
For any set of points in the plane there exists an MST where
the maximum degree of any node is 5. Clearly the minimum
degree of a Steiner point is 2 in an optimal tree. This leads to
the following inequalities:

∑
i∈I

w′i j ≤ 5 ∀ j ∈I , (21)

∑
i∈I

w′is ≥ 2 ∀ s ∈IS, (22)

∑
i∈I

w′i j ≥ 1 ∀ j ∈IY . (23)

yi

yj

ψ1

ψ2

yi

yj

ψ1

ψ2

Figure 4. Gabriel Inequalities

Gabriel Inequalities
Any MST is a subgraph of the Gabriel graph on the set of
all nodes. The Gabriel graph G is defined as follows: edge
yiy j is in G if and only if there are no other nodes in or on
the circle passing through yi,y j with diameter ‖yi− y j‖ (see
the first subfigure of Figure 4). If yiy j is an edge of an MST
and ys is inside or on the circle then yiy j can be replaced by
one of the edges yiys or y jys, giving a shorter MST, which is a
contradiction. Therefore:

‖ys−yi‖p +‖ys−y j‖p > w′i j‖yi−y j‖p ∀ i, j ∈I , i < j,s ∈IS.

We write this as

‖ys− yi‖p +‖ys− y j‖p ≥ ‖yi− y j‖p + ε− (1−w′i j)M

∀ i, j ∈I , i < j,s ∈IS,

where M = max
{
‖yi− y j‖p for all i, j ∈I

}
and ε is some

arbitrarily small number.
We employ the di j variables in our Q model to obtain a

simpler set of inequalities:

‖ys−yi‖p+‖ys−y j‖p≥ di j+ε ∀ i, j∈I , i< j,s∈IS.

As for the Angle Inequalities, it is possible to create sim-
pler inequalities which approximate the Gabriel circle by us-
ing a polygon. Once again, these inequalities are linear when
yi and y j are terminals.

Consider the example from Figure 4. Then ψ1 = (yi +
y j)/2+ 1

2 Rqi j and ψ2 = (yi + y j)/2− 1
2 Rqi j. Based on the

orientation we use the labels α1, ...,α4 for the four corners of
the square. In the example of the figure, we let α1 := ψ1 and
let α2,α3,α4 be the corners we meet in clockwise order.
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Now, if edge yiy j is in a feasible tree, i.e., if w′i j = 1, then
the region bounded by α1, ...,α4 must be empty. Therefore, if
w′i j = 1 then for every ys we have:

ys[2]> L(α1,α2,ys[1]) or
ys[2]< L(α2,α3,ys[1]) or
ys[2]< L(α3,α4,ys[1]) or
ys[2]> L(α4,α1,ys[1]).

This can be expressed in the following way:
4

∑
h=1

βi jhs = w′i j ∀ i, j ∈IY ,s ∈IS,

ys[2]−L(α1,α2,ys[1])≥−M′(1−βi j1)+ ε ∀ i, j ∈IY ,s ∈IS,

L(α2,α3,ys[1])− ys[2]≥−M′(1−βi j2)+ ε ∀ i, j ∈IY ,s ∈IS,

L(α3,α4,ys[1])− ys[2]≥−M′(1−βi j3)+ ε ∀ i, j ∈IY ,s ∈IS,

ys[2]−L(α4,α1,ys[1])≥−M′(1−βi j4)+ ε ∀ i, j ∈IY ,s ∈IS,

(24)

and where βi jhs ∈ {0,1}.

yi

yj

ψ1

ψ2

yi

yj

ψ1

ψ2

Figure 5. Lens inequalities

Lens Inequalities

Every MST is also a subgraph of the Relative Neighbour-
hood graph on its nodes, which, in turn, is a subgraph of the
Gabriel graph. The Relative Neighbourhood graph (RNG) is
defined as follows: edge yiy j is an edge of RNG if and only
if there are no nodes inside or on the boundary of the lens
specified by line segment yiy j. The lens is the intersection
of the two disks centred at yi and y j respectively, both of
radius ‖yi− y j‖ (see Figure 5). This leads to the following
inequalities:

max
{
‖ys−yi‖p,‖ys−y j‖p

}
> w′i j‖yi−y j‖p ∀ i, j ∈I , i < j,s∈IS.

As with the Gabriel property, we can linearise these in-
equalities when yi,y j are terminals. This time we place a
parallelogram inside the lens specified by yi,y j. In the ex-
ample from Figure 5 we have ψ1 = (yi + y j)/2+

√
3

2 Rqi j and

ψ2 = (yi + y j)/2−
√

3
2 Rqi j. Based on the orientation of the

lens we use the labels α1, ...,α4 for the extreme points of the

parallelogram. In terms of the αi this yields the same set of
inequalities as for the Gabriel property.

4. Experiments

4.1 Validation Experiments
All experiments performed are for the case p = 2 only. We
perform our validation experiments on a Dell Optiplex 990
with a 3.4 GHz Intel Core i7 CPU and 8 GB RAM. We im-
plement model N in the Pyomo modelling tool (version 3.5
for python 2.7) [20], and solve it with the SCIP Optimisation
Suite [19, 21, 22], version 3.1.0, using Ilog Cplex version 12.6
[23] as a linear programming solver, and Ipopt version 3.11.8
as a nonlinear programming solver. We implement model Q
in the Gurobi python API, and solve it using Gurobi version
6.0.4 [24]. Since we are solving a quadratic integer program,
we turn off presolve, as recommended by Gurobi. We do not
use any other non-default parameters, preprocessing or valid
inequalities in this test. We generate the testset randomly by
selecting a number of continuous x and y coordinates from
the uniform distribution from the range [0,100].

The results of the validation tests are in Table 2. They
confirmed empirically that the reformulation is sound, and that
the solvers agree on the global solution. The tests revealed two
more important things. The first is that the iterative-alternating
heuristic is very effective at finding the optimal solution. The
second is that the MIQCP solver Gurobi is far more efficient
at solving the model Q than the global MINLP solver SCIP is
at solving the model N. We therefore complete the remaining
experiments on improvements to the formulations only on the
Q implementation in Gurobi.

4.2 Valid Inequality Experiments
We perform the remaining experiments as a single process on
a Dell Server with Intel Xenon E5-2440 @ 2.4 GHz processor;
24 cores including 6 physical cores with 48 threads; 64 GB
RAM. We solve the MIQCP, Q, with Gurobi version 6.0.2.
This version restricted the process to 12 virtual CPUs by
default. We have not tuned Gurobi, but use the following
non-default parameters to improve numerical stability in the
final solutions:

• Quad precision for the Simplex Algorithm turned on.
This is made necessary by the number of large and
small coefficients present in our model.

• Feasibility Tolerance set to 1e-9. All constraints must
be satisfied by this tolerance.

• Presolve is turned off, as recommended by Gurobi for
MIQCP models.

For the first three experiments, we solved the MIQCP model
on 50 random instances for each pairing of terminal node and
Steiner node set sizes. We generated a random number from
the Uniform distribution between 0 and 100 for both the x and
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Table 2. The objective value and run time (seconds) for validation test set for both exact approaches and the
iterative-alternating heuristic with 100,000 runs. The experiment time limit was set to 1800s. Experiments that timed-out are
marked T/O. The iterative-alternating heuristic solution is in column H; the non-linear model solution marked with N; and Q is
the quadratically constrained model solved by Gurobi. Both N and Q have no improvements added. Objective functions where
the solver timed out are marked with (∗).

Name H obj N obj Q obj H time N time Q time

T4-2 283992.4 283992.4 283992.4 66.56 1.13 0.20
T5-3 239005.5 239005.5 239005.5 94.04 14.69 6.22
T6-3 241416.0 241416.0 241415.7 98.46 64.15 12.90
T8-3 298657.0 319462.3* 298657.0 84.33 T/O 341.45
T10-1 4652.0 4652.0 4652.0 45.30 4.33 7.68
T10-3 5852.6 6971.3* 5852.6* 80.50 T/O T/O
T10-5 3362.7 8975.7* 3499.0* 150.67 T/O T/O
T12-1 5023.7 5023.8 5023.8 44.66 10.97 21.36
T12-3 5236.0 6842.5* 5261.6* 90.20 T/O T/O
T12-5 2505.4 5198.6* 2768.0* 150.22 T/O T/O

y coordinates using the Python random library [25]. We then
varied the number of terminal nodes between 5 and 9, and
the number of Steiner nodes between 1 and 3. This resulted
in 750 instances. For the later experiments, where we use
the fastest combinations of improvements (including valid
inequalities), we increase the number of terminal nodes to 10,
resulting in 900 instances.

In Table 3, we present the performance of the preprocess-
ing and warm start heuristics for the 50 instances of each k–t
combination. The preprocessing is very strong, obtaining on
average between 21% and 62% arc removal. The strength of
the preprocessing improves as the ratio of terminal nodes to
Steiner nodes increases. The warm start heuristic is obtained
by solving the beaded heuristic for the arc decisions and al-
lowing Gurobi to complete the solution as described in [26].
We compare the warm start value with the optimal objective
value, the latter which we obtain from solving an exact model
to optimality. The warm start value was also very strong, rang-
ing from 73% of optimal on average to 98%. From the range
of these percentages, we can see that in every set, there was
at least one instance for which the warm start heuristic found
the optimal solution. Only once did the warm start fail. Since
the beaded heuristic is guaranteed to be feasible, this failure is
due to Gurobi primal heuristics finding a better solution and
cutting off the proposed start solution.

In the remaining experiments, we will test the impact
of the improvements on the computational performance of
the model. The key for the improvements we applied in
subsequent experiments is as follows:

• pr: preprocessing variables wi j using the MST over the
terminal nodes

• ws: warm-starting using the beaded-MST solution
• de5: the degree-inequality constraints as upper bound

on the Steiner and terminal nodes, from inequalities
(21)

• de2: the degree-inequality constraints as lower bound
on the Steiner nodes, from inequalities (22)

• de1: the degree-inequality constraints as lower bound
on the terminal nodes, from inequalities (23)

• sym: symmetry breaking constraints, from inequalities
(17)

• sd: angle (sixty-degree) inequalities, from inequalities
(19)

• nce: nonlinear centroid inequality constraints, from
inequalities (20)

• ge: general valid inequalities, from inequalities (11)–
(12)

• ch: convex hull inequalities, as described by (16)
• gl: Gabriel inequalities, from inequalities (24)
• ll: lens inequalities, as described on page 36

We excluded constraints (15) because they are dominated by
the convex-hull constraints (16) almost everywhere.

In Tables 4 and 5, we present the results of the experi-
ment with only one improvement at a time. We excluded
64 instances from the complete set of 750 due to time-outs.
That is, if an instance times out for any one combination of
improvements, we exclude that instance from the results of all
combinations of improvements. Most time-outs were due to
gl and ll and occurred for instances (3,8) and (3,9). We at-
tribute these time-outs to the large number of binary variables
added, as elaborated later. Under the column heading ‘default’
we show the result for no improvements, while the remaining
headings are as described above. If a result beats ‘default’,
then it is in bold. If a result is the best, it is highlighted. In
Table 4, we present the geometric mean of node count for
branch-and-bound search. We see that most improvements
have impact on the node count when the problem is small and
easy (relative to number of Steiner nodes), except sym which
should have no impact when k = 1 as there is no symmetry
to break. The impact for de5, de1 and de2 is negligible.
While gl and ll have some evidence of impact for low val-
ues of k, the node count increases dramatically as the terminal
nodes and Steiner nodes increase. This is due to the way that
we obtained linear versions of these constraints: we introduce
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Table 3. Performance of preprocessing and warm start heuristic. For 50 random instances per k–t combination, we provide the
total arcs and percentage removed. The warm start (ws) values are obtained from the beaded heuristic. We provide the standard
deviation (σ ). Obj value is the optimal solution obtained in later experiments, but repeated here to evaluate the performance of
the warm start heuristic.

|S| |T | Inst. total arcs % removed obj value ws σ ws % optimal % range

1 5 50 30.00 40.00 8846.44 3969.19 94.84 [0.81,1.00]
6 50 42.00 47.62 8802.63 3607.59 95.53 [0.78,1.00]
7 50 56.00 53.57 8727.56 3073.20 97.07 [0.87,1.00]
8 50 72.00 58.33 9519.23 2515.56 97.98 [0.88,1.00]
9 50 90.00 62.22 9737.62 3010.95 97.99 [0.90,1.00]

2 5 50 42.00 28.57 6503.13 3276.83 89.24 [0.01,1.00]
6 50 56.00 35.71 7038.66 2513.83 88.59 [0.42,1.00]
7 50 72.00 41.67 7941.53 2944.81 87.51 [0.57,1.00]
8 50 90.00 46.67 8678.70 3500.01 84.29 [0.52,1.00]
9 50 110.00 50.91 8245.22 2703.72 88.38 [0.50,1.00]

3 5 50 56.00 21.43 5989.44 3232.32 76.57 [0.50,1.00]
6 50 72.00 27.78 5982.65 3131.02 77.22 [0.39,1.00]
7 50 90.00 33.33 6340.25 3482.81 73.09 [0.39,1.00]
8 50 110.00 38.18 7076.64 3541.99 76.63 [0.47,1.00]
9 50 132.00 42.42 7442.89 3733.31 77.05 [0.39,1.00]

Table 4. Geometric mean of node count for 50 instances for each size. Of the total 750 instances, 64 were excluded due to
time-outs (1800s). The default setting has no improvements added. We provide the node count for default mode, and
percentage relative node count for remaining experiments. Each column heading corresponds to an improvement that was
turned on in addition to default settings. Bold results beat default settings, and highlighted results are the best.

|S| |T | |Inst.| default pr ws de5 de1 de2 sym sd nce ge ch gl ll

1 5 50 943.57 0.56 0.10 1.09 1.10 2.11 1.00 0.99 0.16 1.16 0.59 2.81 2.60
6 50 2526.49 0.39 0.08 0.96 1.00 1.75 1.00 0.83 0.25 0.81 0.55 1.68 1.75
7 50 5647.27 0.32 0.09 0.91 0.99 1.47 1.00 0.73 0.25 0.90 0.61 0.98 1.08
8 50 8675.32 0.40 0.16 0.95 1.00 1.28 1.00 0.72 0.30 0.90 0.71 0.72 0.74
9 50 9869.73 0.53 0.27 1.04 1.09 1.24 1.00 0.78 0.39 0.99 0.81 0.69 0.74

2 5 50 8546.32 0.68 0.15 0.99 0.98 0.97 0.93 0.89 0.20 0.86 0.67 1.00 1.03
6 50 11665.95 0.80 0.34 1.01 1.01 1.02 0.95 0.93 0.27 0.89 0.93 1.26 1.17
7 50 13251.35 0.97 0.72 0.99 1.02 0.99 0.92 1.04 0.54 1.00 0.99 1.97 2.24
8 50 16952.57 0.83 0.82 0.96 0.99 1.01 0.85 1.01 0.72 0.93 0.95 4.26 4.90
9 50 25455.48 0.74 0.84 1.03 1.00 0.99 0.84 0.96 0.69 0.91 0.96 6.44 6.86

3 5 50 14930.91 0.96 0.76 1.03 1.04 1.01 0.83 1.05 0.69 1.04 1.04 1.95 2.18
6 50 27059.46 0.84 0.94 1.00 1.01 1.01 0.68 1.00 0.94 0.96 0.93 3.54 3.70
7 50 57288.15 0.80 1.12 0.99 1.02 1.00 0.59 1.07 1.09 0.97 0.99 7.05 6.62
8 32 119115.06 0.73 1.23 1.01 1.03 0.93 0.51 1.00 1.29 0.93 0.98 8.81 10.69
9 4 354131.55 0.50 1.20 0.84 0.76 0.92 0.28 0.70 1.42 0.71 0.89 7.73 7.85

binary variables for each constraint—specifically, for each
Steiner node we add 4× k× n variables and 5× k× n con-
straints. Reducing the admissible terminal-to-terminal arcs
therefore has direct impact on the number of these variables
and constraints. The improvements obtained from pr and ws
are very strong, followed by some strong improvements from
sym, sd, and nce.

In Table 5, we present the geometric mean of solve times
in seconds. Since most instances excluded are from (3,9), this
row should be interpreted with caution. As single improve-
ments, pr and ws have the strongest impact on solve time.
The improvements sym, nce and ch also have consistent
impact as single improvements, although to a lesser degree.

Next, we are interested in seeing the combined improve-
ment. We set up this experiment with preprocessing and
warm-start as default settings, and add a single further im-
provement. These results are in Tables 6 and 7. We excluded
58 instances from the total 750 due to time-outs. All of these
time-outs occurred in instances where k = 3, and were caused
by improvements gl and ll.

In Table 6, we present the geometric mean of the node
count during branch-and-bound search. The two most impor-
tant improvements are ge and sym. We see the impact by
nonlinear centroid inequalities (nce) has diminished now that
pr and ws are both on. The symmetry-breaking constraints
(sym) become important as the Steiner nodes increase. The
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Table 5. Geometric mean of solve time for 50 instances for each size. Of the total 750 instances, 64 were excluded due to
time-outs (1800s). The default setting has no improvements added. We provide the solve time in seconds for default mode, and
percentage relative solve time for the remaining experiments. Each column heading corresponds to an improvement that was
turned on in addition to default settings. Bold results beat default settings, and highlighted results are the best.

|S| |T | |Inst.| default pr ws de5 de1 de2 sym sd nce ge ch gl ll

1 5 50 0.14 0.62 0.43 0.97 0.95 1.76 0.92 0.86 0.71 1.00 0.56 1.80 1.55
6 50 0.24 0.57 0.38 1.04 1.14 2.04 1.00 0.90 0.76 1.10 0.72 2.20 1.96
7 50 0.39 0.56 0.37 1.17 1.17 2.19 1.07 0.95 0.73 1.30 0.82 2.33 2.06
8 50 0.64 0.65 0.38 1.29 1.38 1.99 1.22 1.16 0.75 1.47 0.83 1.80 1.85
9 50 1.04 0.54 0.39 1.26 1.27 1.76 1.25 1.29 0.78 1.45 0.83 1.52 1.55

2 5 50 0.87 0.75 0.24 1.07 1.08 1.20 1.01 0.94 0.52 1.11 0.45 1.61 1.64
6 50 2.04 0.59 0.19 1.21 1.24 1.48 1.15 1.17 0.48 0.73 0.70 1.58 1.44
7 50 2.67 0.86 0.29 1.29 1.33 1.32 1.09 1.66 0.77 1.46 0.95 2.19 2.58
8 50 3.63 1.03 0.39 1.25 1.30 1.34 1.11 1.73 1.26 1.33 1.03 4.59 4.76
9 50 5.02 1.23 0.49 1.52 1.42 1.45 1.22 1.58 1.50 1.40 1.14 7.89 8.19

3 5 50 5.38 1.40 0.24 1.36 1.48 1.54 0.96 1.95 0.90 1.76 1.15 2.27 2.21
6 50 9.57 1.13 0.39 1.30 1.40 1.53 0.88 1.59 1.59 1.33 1.02 3.53 3.62
7 50 24.02 1.03 0.38 1.36 1.34 1.50 0.73 1.52 1.39 1.23 1.05 5.82 5.11
8 32 53.47 1.09 0.38 1.42 1.69 1.31 0.70 1.61 1.46 1.29 1.06 7.44 8.67
9 4 187.69 0.46 0.30 0.77 0.80 1.27 0.26 0.97 0.85 0.67 0.57 3.22 4.05

convex hull inequalities (ch) have impact across all problem
sizes, while the angle inequalities (sd) have negligible impact.
The inequalities de1, de2, de5, and ge sporadically have
impact with no consistent behaviour. The Gabriel and lens
inequalities continue their negative performance in the node
count during branch and bound search.

In Table 7, we present the geometric mean of the solve
time of each experiment. The combined impact of pr and
ws is better than the individual impact of these improvements.
The most important additional improvements are convex hull
constraints (ch) and general constraints (ge), which beat
default for most experiments. However, the difference is
not very large. A more impressive difference is visible with
the symmetry breaking constraints (sym), which improve in
their impact as the Steiner points increase. The nonlinear
centroid inequalities (nce) improve on the individual solve
times reported in Table 5, but the improvement is much worse
than the default setting of pr and ws. This result suggests that
the time required to solve the additional nonlinear constraints
is not aided by the preprocessing and warm-start. Again, the
inequalities de1, de2, and de5 sporadically have impact,
although to a lesser degree than we would expect from the
node count. This suggests that even though the branch and
bound tree was smaller, more time was required to solve the
relaxation with these constraints added. The Gabriel and lens
inequalities decrease performance of the model, as expected
from the node count results.

We combine the results from these two tables to create a
final experiment. We create combinations of improvements
that we expect to perform well with respect to node count and
time. From the results in Tables 6 and 7, which are consistent,
we create a set with pr, ws, sym, ge, and ch. In set B,
we take all improvements from set A and add two degree
inequality constraints that appeared to have negligible impact

in previous experiments. For a third experiment set, we look
at the non-negligible impact improvements from Table 4. We
do this because those sets that perform best for node count are
likely to become the best sets in the future when algorithms
for the nonlinear programming relaxation improve. If the
inequalities are added dynamically via separation, then this
set is also likely to be the best performer. However, given the
current state-of-the-art in algorithm performance, we expect
the time-based improvement sets to be the best sets. This
results in three improvement sets, which we outline in Table
8.

We compare each of these sets against default, which
has no improvements. We increase the test instances to include
10 terminal nodes, and decrease the time-out to 600s. Of the
resulting 900 instances, we excluded 3 due to time-out–all of
which were caused by None.

We present the node count for all five sets in Table 10. As
we expected, the set that we selected to perform well with
respect to node count (set C) has the best outcome for most
instance sizes. The ratio of best average performance over the
average default performance ranges from 0.04 to 0.39, with
the strongest results occurring when the Steiner points are few.
All improvement sets outperformed the default settings for
node count.

The time results for all four sets are in Table 9, where we
see an improvement in the performance ratio from best per-
formance to default performance. This now ranges from 0.07
to 0.26, and illustrates the impact of the improvements on the
ancillary algorithms—such as linear and nonlinear program-
ming subproblem methods—gained from the improvement
sets. When k = 1, both A and B perform equally as well.
However, set B becomes dominant as the problem difficulty
increases with respect to Steiner nodes. This illustrates the im-
portance of testing the computational impact of valid inequal-
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Table 6. Geometric mean of node count for 50 instances for each size. Of the total 750 instances, 58 were excluded due to
time-outs (1800s). Default settings have both preprocessing and warm-start turned on. We provide node count for default
settings, and percentage relative performance for remaining experiments. Each column heading corresponds to an improvement
that was turned on in addition to default settings. Results that beat default settings are in bold. The cell of the best result is
highlighted.

|S| |T | |Inst.| default de5 de1 de2 sym sd nce ge ch gl ll

1 5 50 70.02 1.00 1.01 1.01 1.00 1.04 0.96 0.92 0.90 1.51 1.54
6 50 131.98 0.98 0.97 0.97 1.00 1.03 1.03 0.89 0.93 1.70 1.69
7 50 223.54 0.98 1.05 1.03 1.00 1.09 1.19 0.89 0.96 1.89 2.05
8 50 353.07 0.98 1.00 0.99 1.00 1.07 1.22 0.87 0.96 2.13 2.20
9 50 544.07 1.01 1.01 1.00 1.00 1.11 1.12 0.85 0.97 2.13 2.17

2 5 50 862.93 1.03 1.02 1.00 1.13 1.15 1.18 0.95 0.97 2.06 2.08
6 50 2053.96 1.01 1.01 1.03 1.12 1.12 1.06 0.91 0.99 2.11 2.14
7 50 4810.72 0.96 0.99 1.00 0.98 1.04 0.90 0.87 0.98 1.83 1.93
8 50 8686.89 0.98 1.04 0.99 0.96 1.02 0.92 0.88 1.02 1.74 1.77
9 50 13720.89 0.98 1.06 1.01 0.90 1.06 1.01 0.90 1.01 2.04 1.84

3 5 50 10018.58 1.01 0.89 1.00 0.88 0.90 0.90 0.77 0.89 1.30 1.33
6 50 21667.64 1.01 0.99 0.98 0.70 0.98 1.06 0.84 0.99 1.63 1.46
7 50 46831.46 0.99 1.03 1.01 0.57 1.04 1.20 0.93 0.98 5.83 8.60
8 34 98537.33 0.99 1.01 0.99 0.43 1.06 1.15 0.94 0.98 13.17 19.21
9 8 155963.79 1.00 1.05 1.03 0.42 1.13 1.30 0.91 0.98 15.73 15.32

Table 7. Geometric mean of solve time for 50 instances for each size. Of the total 750 instances, 58 were excluded due to
time-outs (1800s). Default settings have both preprocessing and warm-start turned on. We provide the time in seconds for
default settings, and percentage relative performance for remaining experiments. Each column heading corresponds to an
improvement that was turned on in addition to default settings. Results that beat default settings are in bold. The cell of the best
result is highlighted.

|S| |T | |Inst.| default de5 de1 de2 sym sd nce ge ch gl ll

1 5 50 0.03 1.07 1.01 1.06 1.02 1.10 1.75 1.10 0.97 1.05 1.02
6 50 0.05 0.95 1.00 0.99 0.97 1.09 1.93 1.03 0.89 1.08 1.05
7 50 0.06 1.01 1.04 1.00 1.02 1.15 2.23 1.08 0.94 1.24 1.31
8 50 0.08 1.04 0.99 0.98 1.02 1.11 2.31 1.05 0.97 1.34 1.43
9 50 0.09 1.01 1.04 0.99 1.02 1.17 2.46 1.02 0.99 1.57 1.59

2 5 50 0.12 0.99 1.03 1.06 1.19 1.09 3.44 1.09 0.89 1.67 1.68
6 50 0.20 0.99 1.07 1.10 1.30 1.28 3.75 0.97 0.88 2.12 2.07
7 50 0.35 1.04 1.18 1.15 1.32 1.37 3.68 0.92 0.92 2.33 2.20
8 50 0.60 1.02 1.14 1.11 1.34 1.30 3.71 0.98 1.04 2.89 2.82
9 50 1.14 1.06 1.05 1.00 1.04 1.29 3.52 0.97 0.99 2.66 2.30

3 5 50 1.16 0.98 0.85 1.02 1.18 1.03 3.14 0.81 0.74 1.84 1.82
6 50 3.70 1.05 1.00 1.03 0.93 1.18 3.30 0.94 0.92 2.05 1.80
7 50 8.19 1.01 1.03 1.02 0.82 1.18 3.35 1.06 0.90 6.01 9.10
8 34 16.86 0.99 1.01 0.99 0.61 1.17 3.06 0.98 0.92 14.99 21.99
9 8 25.83 1.05 1.09 1.05 0.42 1.21 3.46 1.00 0.92 17.31 17.12

ities in the context of each other. The nodecount based set,
C, outperformed the default settings. However, the combined
impact of this set could not keep up with the performance of B
or C due to a loss in performance of subproblem algorithms.

4.3 Discussion
While we observed greater numerical stability in the global
MINLP solver, SCIP, for solving model N, this came at a
significant cost of solve time—to the extent where we would
not expect to solve interesting sized networks with default
settings. In contrast, the MIQCP solver, Gurobi, was very
efficient for model Q, but with unstable performance that

had to be tamed with strict tolerances for precision, both on
quadratic precision and feasibility tolerances.

Table 8. The improvement sets in the final experiment.

A B C

pr, ws, ge, ch pr, ws, ge, ch pr, ws, sd, nce
sym sym, de1, de2 sym, ch, ge

The extensive set of computational experiments lead to
a new perspective on the efficiency of the proposed proce-
dures and valid inequalities. In particular, we could obtain
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Table 9. Geometric mean of solve time (seconds) for no
improvements (‘None’) and four improvement sets. Of the
900 test instances, 3 were excluded due to time-outs (600s).

k n None A B C best
default

1 5 0.14 0.04 0.04 0.06 0.26
6 0.24 0.05 0.05 0.09 0.20
7 0.39 0.06 0.06 0.12 0.15
8 0.64 0.08 0.07 0.15 0.11
9 1.04 0.09 0.10 0.22 0.09
10 1.47 0.11 0.12 0.29 0.08

2 5 0.87 0.13 0.14 0.35 0.15
6 2.04 0.24 0.24 0.57 0.12
7 2.67 0.45 0.38 0.88 0.14
8 3.63 0.72 0.68 1.45 0.19
9 5.02 1.13 1.03 2.39 0.21
10 8.31 2.22 1.86 4.57 0.22

3 5 5.38 0.73 0.63 1.63 0.12
6 9.57 2.89 1.72 4.05 0.18
7 24.02 6.08 4.61 10.18 0.19
8 65.38 9.41 7.04 17.01 0.11
9 161.90 14.44 11.00 30.64 0.07
10 300.31 32.74 23.12 58.04 0.08

combinations of strategies that were able to efficiently reduce
the size of the branch and bound tree and computational time
needed to solve instances of up to 10 terminal nodes and 3
Steiner points. Although these instances are still small from
the perspective of most real applications, this study opens a
path of research in the use of black box solvers for the solution
of this family of geometric Steiner problems.

We have devoted much attention to the analysis of the
performance of different valid inequalities when included a
priori in the model. As the results indicate, a stronger formu-
lation is not always equivalent to a superior computational
performance. Further investigation in this area includes both
a deeper theoretical analysis of the strength of such valid in-
equalities and extended computational experiments that could,
for example, add violated cuts on the fly, reducing the burden
of solving the complete nonlinear problem at each node.

With respect to the heuristics, our results indicate that even
simple procedures such as the beaded heuristic can obtain rel-
atively good solutions in very short computational times. This
indicates that the use of such heuristic as a warm start pro-
cedure (as presented here) can be an easy and efficient way
of reducing the solution times of exact methods. Thus both
heuristics can be useful for large-scale problems, where ob-
taining a good-quality solution is preferable to obtaining no
solution at all. Moreover, the beaded heuristic appears as a
strong candidate as the solution method of choice when time
available for solution is restricted, either because the appli-
cation requires a near-to-immediate answer or because the
method has to be solved many times (for example, when the
Steiner problem is a subproblem in a decomposition algorithm
for a more complex formulation).

Finally, in between the exact approaches and the beaded

Table 10. Geometric mean of node count for no
improvements (‘None’) and three test sets. Of the 900
instances, 3 were excluded due to time-outs (600s). Bold
results beat default settings, and highlighted results are the
best.

k n None A B C best
default

1 5 943.57 58.38 55.87 38.40 0.04
6 2526.49 109.26 107.10 80.76 0.03
7 5647.27 195.19 194.08 162.45 0.03
8 8675.32 294.82 298.24 254.31 0.03
9 9869.73 469.27 466.26 381.80 0.04

10 13370.08 682.18 705.11 556.11 0.04
2 5 8546.32 788.64 787.46 594.45 0.07

6 11665.95 2027.54 1869.03 1277.22 0.11
7 13251.35 4183.71 3909.23 2378.86 0.18
8 16952.57 7048.67 7172.73 4465.16 0.26
9 25455.48 11099.15 10694.99 7838.36 0.31

10 39870.09 16802.27 17055.77 13853.20 0.35
3 5 14930.91 6516.68 5052.74 4274.75 0.29

6 27059.46 13557.92 11054.63 10646.82 0.39
7 57288.15 23904.48 22380.26 21086.59 0.37
8 129623.67 42021.82 39528.68 42837.50 0.30
9 277804.60 79135.59 70965.90 85061.84 0.26

10 557109.07 130913.13 122668.59 170658.52 0.22

heuristic sits our proposed iterative-alternating heuristic, which
is capable of providing optimal solutions in reasonable compu-
tational times (i.e., in minutes). Two features of this heuristic
are note worthy. First, each iteration of the heuristic relies on
alternating an MST procedure and the solving of a system of
linear equations. These “local” iterations are very fast and
converge in very few steps to a local optimum. Other methods
could make use of such an idea while possibly adding some
long term memory. Indeed, any kind of general metaheuris-
tic framework such as GRASP [27] or Iterated Local Search
[28] could be used in the upper decision layer that defines
the initial positions of the candidate Steiner points. This is
likely to accelerate convergence to good solutions. Second,
the optimality of these local iterations suggest that if one is to
find a decomposition method which relies on such subprob-
lems, then it is likely that much larger instances will become
solvable.
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local search. In: GLOVER, F.; KOCHENBERGER, G. (Ed.).
Handbook of metaheuristics. 1. ed. Massachusetts, USA:
Kluwer Academic Publishers, 2003. v. 70, p. 321–353.
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