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Abstract 

A number of cardiac conditions such as acute 

pericarditis (PC) and early repolarization (ER) cause ST 

elevation which mimics ST-segment Elevation Myocardial 

Infarction (STEMI). Current guidelines recommend 

analyzing ST segment morphology to distinguish STEMI 

from these confounders. ST elevation in PC and ER (and 

possibly in STEMI) is concave (upward) in the JTpeak 

interval, while a convex or straight ECG ST segment is 

associated with the diagnosis of STEMI. We developed an 

algorithm to classify concavity characteristic of the ST 

segment. A quadratic polynomial regression algorithm 

was introduced to model the shape of JTpeak interval. Our 

diagnostic algorithm generated representative beats and 

measured the fiducial points and standard measurements 

such as ST level in 12-lead 10-sec segments of ECG 

recordings. JTpeak interval was modeled by a parabola 

using a least-squares polynomial regression algorithm. 

Classifier features such as curvature, parabola direction 

and vertex, model fit error, and the noise measure were 

determined. A bootstrap-aggregated tree ensemble 

classifier determined the ST segment shape. Our algorithm 

was evaluated on a 12-lead ECG database collected in two 

medical centers. Our ST segment polynomial regression 

model exhibited significant improvement in concavity 

detection versus a simple conventional method.  

 

 

1. Introduction 

Some cardiac diseases such as pericarditis (PC), early 

repolarization (ER), left bundle branch block (LBBB), and 

left ventricular hypertrophy (LVH) show ST elevation, 

confounding the diagnosis of ST-segment Elevation 

Myocardial Infarction (STEMI). Extra features, such as ST 

segment morphology, are required in addition to ST 

elevation, to distinguish STEMI from ST elevation 

confounders. Pericarditis and early repolarization show 

concave (upward) ST elevation against STEMI with 

convex or straight-line ST segment (except anterior 

STEMI). While LBBB and LVH have typically concave 

ST elevation, we focus only on PC and ER confounders. 

Each cardiac condition has a set of specific criteria [1-

4]. The set of criteria for diagnosis of pericarditis includes 

widespread concave (upward) ST elevation with PR-

segment depression in some leads [5]. Early repolarization 

is diagnosed by concave upward ST elevation mostly in 

pre-cordial leads and possibly extended to the other leads 

without reciprocal ST depression, and presence of J-waves 

or J-point notches/slurs [6]. Ratio of T-wave amplitude to 

ST level is a major discriminator between early 

repolarization (high) and pericarditis (low). STEMI is 

defined by ST elevation (typically convex or straight, but 

could be concave in a large fraction of anterior cases) in at 

least two contiguous leads, ST depression in reciprocal 

leads, presence of Q-waves, and wide upright or inverted 

T-waves [7,8]. 

Most conventional algorithms determine concavity by 

simple measures such as the area between the JTpeak 

interval and the line connecting its ends or the position of 

the point in the JTpeak interval with maximum distance 

from the straight line. However, these simple models 

behave poorly in the presence of artifact. We modeled the 

ST segment morphology by a low-dimensional polynomial 

and defined several features to classify the ST segment 

concavity. The criteria to diagnose STEMI or its 

confounders make use of the concavity feature in addition 

to the other features specific to each cardiac condition. 

The rest of this paper is organized as follows. Section 2 

describes the method and material including the algorithm 

overview, polynomial regression model, classifier 

features, database, and classifier description. Results are 

provided in Section 3. Discussion and conclusions are 

presented in Section 4. 

 

2. Method and Material 

2.1. Algorithm Overview 

Block diagram of our algorithm is shown in Figure 1. 

Our algorithm reads the multi-lead data (12-lead or more) 

and analyzes them in non-overlapping 10-second 

segments. The algorithm generates a representative beat in 

each segment, identifies the fiducial points, finds standard 

measurements such as ST level. 

Computing in Cardiology 2019; Vol 46 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2019.005



We determine JTpeak interval which is the interval 

between the end of QRS complex (J-point) and the peak of 

the T-wave. This interval is modeled by a fitted section of 

the quadratic curve (parabola) using a least-squares 

polynomial regression approach. The classifier features 

such as the parabola opening direction and its vertex 

location, polynomial model fit error, noise measure, and 

curvature measures are determined from the fitted curve 

and the original JTpeak interval. These features determine 

whether the curve fits the JTpeak properly and if it is 

concave upward by using a classifier.  

Check the set of diagnostic criteria 

including concavity feature

Repeat for all leads

Read the 

12-lead 

10-sec ECG

Generate the representative beat

Find the fiducial points, ST-level, 

and JTpeak interval

Fit a quadratic curve 

to the JTpeak interval

Measure the features: Parabola opening 

direction and its vertex location, model fit 

error, noise measure, curvature

Start

End

Classify the upward concavity 

Is there ST 

elevation?

Yes

No

 
Figure 1. Block diagram of the algorithm. This 

procedure is repeated for all leads in the data. 

 

Concavity is one of the features used in the set of 

diagnostic criteria for each of the cardiac conditions 

including STEMI, pericarditis, or early repolarization. 

2.2. Polynomial Regression model 

Using quadratic polynomial regression analysis, JTpeak 

interval was modeled by a low-dimensional curve 

(parabola) defined by only three coefficients a, b, and c: 

            𝑦̂ = 𝑎𝑥2 + 𝑏𝑥 + 𝑐  (1) 

To explicitly derive these coefficients, we used least-

squares method to minimize the error between the model 

and the JTpeak interval regarding margins at its both ends 

to avoid the roundness around J-point and T-wave peak. 

The regression error is the sum of the squared errors 

between the model (𝑦̂) and the original signal (𝑦) at each 

sample k over 𝑁 samples (𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, . . , 𝑁: 

𝑆 = ∑ (𝑒𝑘)2
𝑘 = ∑ (𝑦𝑘 −  (𝑎𝑥𝑘

2 + 𝑏𝑥𝑘 + 𝑐))
2

𝑘    (2) 

which is minimized by: 

  
𝜕𝑆

𝜕𝑎
= 0,

𝜕𝑆

𝜕𝑏
= 0,

𝜕𝑆

𝜕𝑐
= 0   (3) 

These derivatives define a system of three equations 

which is solved for the three unknown coefficients using 

the Cramer’s rule: 

             𝑎 =  
∆𝑎

∆
,    𝑏 =  

∆𝑏

∆
,    𝑐 =  

∆𝑐

∆
  (4) 

The determinants (Δ’s) are defined in closed forms in 

terms of 𝑥𝑘 and 𝑦𝑘 , 𝑘 = 1, . . , 𝑁. 

Figure 2 displays an example of the quadratic 

polynomial regression of the JTpeak interval in a 

representative beat extracted from a 10-second ECG 

segment. The regression parabola, osculating circle with 

the curvature radius, and the line connecting both ends of 

the JTpeak interval are illustrated.  

 

 
Figure 2. Example of quadratic polynomial regression 

of the JTpeak interval (large dots). A section of the 

regression parabola fits the JTpeak interval and the 

curvature at each point of the JTpeak interval is defined by 

a curvature radius of an osculating circle at that point. 
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2.3. Classifier Features 

Other than the coefficient of the quadratic term in the 

hyperbola equation (a) which determines the opening 

direction of the hyperbola, we take into account other 

features which determine the position of parabola section 

fitting the JTpeak interval, goodness of fit, signal quality, 

and the JTpeak interval degree of curve. 

Location of the vertex of parabola determines the shape 

of parabola section fitting the JTpeak interval: 

            𝑣 =  −
𝑏

2𝑎
   (5) 

Model fit error describes the difference between the 

fitted curve and the smoothed JTpeak interval and is 

presented by the coefficient of determination (R-squared):  

     𝑅2 = 1 −  
∑(𝑦̃−𝑦̂)2

∑(𝑦̃−𝑦̃𝑎𝑣𝑒)2  (6) 

where 𝑦̃ is the JTpeak interval smoothed by a moving 

average filter and 𝑦̃𝑎𝑣𝑒 is its average. 

Noise measure is the mean difference of the ECG 

values in the JTpeak interval from their smoothed values 

normalized by the range of the JTpeak interval: 

     𝑁𝑀 =
∑|𝑦−𝑦̃|

𝑁.|𝑦̃𝑚𝑎𝑥−𝑦̃𝑚𝑖𝑛|
  (7) 

Degree of curve in the JTpeak interval is determined by 

two features. First feature is 𝜅̂𝑚𝑎𝑥, defined by the scaled 

maximum curvature: 

     𝜅̂𝑚𝑎𝑥 = max(𝜅) . |𝑦̂𝑚𝑎𝑥 − 𝑦̂𝑚𝑖𝑛|  (8) 

where curvature 𝜅 (the measure which determines the 

degree to which the fitted model is curved) is presented by: 

        𝜅 =  
|𝑦̂(𝑥)"|

(1+𝑦̂(𝑥)′2
)

3
2

  (9) 

Second curvature feature is defined based on the 

curvature variation during the JTpeak interval:  

         𝜅𝑟𝑎𝑡𝑖𝑜 =
max (𝜅)

min (𝜅)
  (10) 

 

2.4. Database 

The algorithm was developed on a subset of 12-lead 

ECG data selected from databases collected in two medical 

centers. We selected a total of 300, 10-sec segments of 12-

lead ECG records annotated either by experts’ reviews or 

from discharge charts which include STEMI (n=100), PC 

(n=100), and ER (n=100).  

All leads were manually reviewed and annotated with 

the binary decision of visible upward concavity or not. We 

selected the leads which showed ST elevation greater than 

50µV. As a result, 1,820 concavity-annotated leads were 

chosen with one of those three cardiac conditions. These 

concavity annotations were used as the reference in our 

classification. 

 

2.5. Classifier Description 

We developed a bootstrap-aggregated ensemble of 

decision trees to classify the ST segment concavity. The 

classifier consists of 100 trees with maximum 100 splits 

and takes the six described classifier features (coefficient 

a, 𝑅2, NM, v, 𝜅̂𝑚𝑎𝑥 , and 𝜅𝑟𝑎𝑡𝑖𝑜) measured from 1,820 leads 

with ST elevation as predictors. The output is binary with 

the positive event being the concave upward ST segment.  

 

3. Results 

Table 1 summarizes the performance of our regression 

algorithm using a 10-fold cross validation. Also listed for 

comparison is the performance of a simple conventional 

method that determines the concavity of ST segment by 

position of the point on JTpeak interval maximizing the 

distance to the line connecting the JTpeak interval 

boundaries, whether it is located above or below the line. 

Figure 4 shows the confusion matrix of the outcome. 

Figure 5 displays the classifier ROC with AUC = 97%. 

Figure 6. Illustrates the example of 12-lead ECG 

representative beats and the fitted parabolas for ST 

segments with at least 50µV elevation in patients with 

pericarditis, early repolarization, or STEMI. 

 

Figure 4. Confusion matrix of the classifier. 

 
Figure 5. Classifier outcome ROC with AUC = 0.97. 
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(a) Pericarditis 

 
(b) Early repolarization 

  
(c) STEMI 

Figure 6. Example of 12-lead ECG representative beats in 

patients with (a) pericarditis, (b) early repolarization, and 

(c) STEMI. All ST segments with at least 50µV elevation 

are fitted to a section of parabola. Note that the lead aVR 

displays inverted ST segment and hence a reverse 

concavity direction. 

Table 1. Regression algorithm performance compared to a simple 

method  

Algorithm Se(%) Sp(%) PPV(%) NPV(%) 

Polynomial 97 88 97 89 

Simple 96 58 91 77 

 

4. Discussion and Conclusions 

Modeling the ST segment by a polynomial regression 

model showed significant improvement versus a simple 

conventional method of concavity detection. The model is 

low-dimensional, is defined by only three parameters, and 

is solved using closed form expressions, which makes it 

computationally efficient and a proper candidate for easy 

implementation in systems with limited power, memory or 

processing performance. False cases are mostly due to the 

borderline concavity, inaccuracies in the JTpeak 

determination, and high nonlinearity in the curvature 

equation. Using a larger validation database will enhance 

the algorithm performance evaluation. 
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