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Abstract 

Non-invasive fetal electrocardiography has the 
potential of providing vital information for evaluating the 
health status of the fetus. However, the low signal-to-
noise ratio of the fetal electrocardiogram (ECG) impedes 
the applicability of the method in clinical practice. 
Residual noise in the fetal ECG, after the maternal ECG 
is suppressed, is often non-stationary, complex and has 
spectral overlap with the fetal ECG. We present a deep 
fully convolutional encoder-decoder framework, for 
removing the residual noise from single-channel fetal 
ECG. The method was tested in a broad simulated fetal 
ECG dataset with varying amount of noise. The results 
demonstrate that after the denoising there was an 
average increase in the correlation coefficient between 
the corrupted signals and the original ones from 0.6 to 
0.8. Moreover, the suggested framework successfully 
handled different levels of noises in a single model. The 
network was further tested on real signals showing 
substantial noise removal performance, thus providing a 
promising approach for fetal ECG signal denoising. The 
presented method is able to significantly improve the 
quality of the extracted fetal ECG signals, having the 
advantage of preserving beat-to-beat morphological 
variations. 

 
 

1. Introduction 

During pregnancy and labor, non-invasive monitoring 
of the fetal heart is of great clinical interest for assessing 
the condition of the fetus. Non-invasive fetal 
electrocardiography, performed by abdominal electrodes, 
is a technology that has significantly evolved the last 
years [1]. However, it still needs a great deal of 
improvements to become a valid alternative to 
cardiotocography, the technique commonly used in 

clinical practice. Nevertheless, fetal electrocardiography 
holds the promise of providing additional information in 
terms of the ECG morphology. The reason for this 
required improvement is that the abdominal signals are 
severely contaminated by the maternal ECG, muscle 
noise, baseline wander, powerline interference and other 
interferences and noises. The majority of these noises 
overlap in frequency and time with the fetal ECG, 
rendering the extraction of a clean fetal ECG a 
challenging signal processing task. 

According to the review of Sameni et al. [1] the main 
methods for fetal ECG extraction include adaptive 
filtering and linear and non-linear decomposition. Ιn the 
extracted fetal ECG signals, usually it is possible to detect 
the QRS complex due to the high amplitude of the fetal 
R-peak. However, the low signal-to-noise-ratio (SNR) of 
the fetal ECG impedes further morphological analysis and 
post-processing to remove residual noise becomes 
inevitable. The running average of several heartbeats is 
widely used to improve the SNR of the signal at the 
expense of losing individual variations in pulse shape. In 
a previous work, the authors have used an augmented 
time-sequenced adaptive filter as a post-processing 
quality enhancement step [2]. However, the fetal pulse 
locations are needed to synchronise the filter and 
additionally the filter is unable to track rapid changes in 
the signal morphology, for instance in the presence of 
ectopic beats.  

To overcome the aforementioned problems, we 
propose the use of a deep learning approach for single-
channel fetal ECG signal denoising. Stacked denoising 
autoencoders [3] and recurrent neural networks [4] have 
been already suggested for denoising adult ECG. Instead, 
inspired by the work of Mao et al. [5] on image 
restoration, we propose the employment of a deep 
convolutional encoder-decoder network with symmetric 
skip connections.  
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Figure 1. The architecture of the proposed fetal ECG denoising network. 
 
 
2. Methods 

2.1. Network Architecture 

The proposed network consists of a chain of 
convolutional and symmetric transposed convolutional 
layers, as shown in Figure 1. The encoder part of the 
network acts as a feature extractor, which captures the 
primary fetal ECG structure, while eliminating the signal 
corruptions layer by layer. During this process the signal 
details might be lost. Then, the decoder part is used to 
compensate for the missing details. The decoder aims to 
deliver the clean version of the input signal as output. 
Moreover, skip connections are added between every two 
corresponding convolutional and transposed 
convolutional layers. Through the skip connections, the 
convolutional feature maps are added to the symmetric 
transposed convolutional ones and then pass to a Leaky 
Relu layer.  The role of the skip connections is to transfer 
signal details to the decoder, aiding in recovering the 
clean signal. Moreover, they help in tackling the 
optimization difficulty caused by gradient vanishing in 
deep architectures. 

Our network comprises of 8 convolutional and 8 
transposed convolutional layers. All the convolutional 
layers, apart from the first one, include subsampling 
operations. For denoising tasks down-sampling of the 
signal is not generally preferred for the sake of preserving 
the signal details. However, by employing down-
sampling operations the effective receptive field of the 
network is significantly increased. This is particularly 
important in the case of fetal ECG as it usually exhibits 
high levels of noise and thus it requires a large effective 
patch size to capture more information for efficient 
denoising. As a kernel size we use 15 which in the case of 
signals sampled at 500Hz corresponds to 30ms. The 
above parameter choices lead to an effective receptive 
field of approximately 3.6s that corresponds to 5-10 

heartbeats. The number of feature maps in the 
convolutional layers is [64, 128, 128, 256, 256, 512, 512, 
1024]. Consequently, the dimension of the bottleneck 
feature vector is 1024x15. The transposed convolutional 
layers use mirrored numbered of filters. 

As a loss function the normalized mean squared error 
(NMSE) is adopted: 
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where N is the number of the training data in a batch, 𝑋𝑋�(𝑖𝑖) 
is the i-th denoised fetal ECG, 𝑋𝑋(𝑖𝑖) is the clean  version of 
𝑋𝑋�(𝑖𝑖), used as ground truth, and 𝑋𝑋�(𝑖𝑖) the mean signal 
amplitude. For optimizing the network, the Adam 
algorithm is selected. 
 
2.2. Performance metric 

The performance of the method is assessed based on 
the correlation coefficient between the network input and 
output: 

        𝑅𝑅𝑖𝑖𝑖𝑖 =
𝐶𝐶𝑖𝑖𝑖𝑖
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where C is the covariance matrix. The values of 𝑅𝑅 are 
between -1 and 1 inclusive. 
 
3. Data 

For training of the proposed network as well as for 
testing we use a simulated dataset. Moreover, to show the 
network potential in real cases we include also results of 
real data.  

The simulated dataset is composed of two parts. The 
first part of the simulated dataset consists of the Fetal 
ECG Synthetic database of Physionet (FECGSYNDB) 
[6], [7]. The FECGSYNDB includes 1750 synthetic 34- 
channel abdominal signals, sampled at 250 Hz and each 5 
minutes long. Different physiological events are 
simulated, such as fetal movements, heart rate 
accelerations/ decelerations, ectopic beats etc. To increase 
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Figure 2. Denoising results for simulated fetal ECG 
signals in the test dataset. For each subplot a-f: the noisy 
signal is presented in the first row (blue), followed by the 
ground truth in the second one (red) and the denoised 
signal in the last row (green). The correlation coefficients, 
R, between the noisy/denoised signals and the ground 
truth are also provided. 
 
the diversity of ECG patterns in our dataset and reduce 
the risk of overfitting we use a second set of data 
comprising of adult ECG and real noise. The adult ECGs 
are collected from 3 different databases of Physionet, the 
PTB Diagnostic ECG Database [8], the St.-Petersburg 
Institute of Cardiological Technics 12-lead Arrhythmia 
Database [7] and the QT database [9]. The signals are 
denoised and resampled at half frequency to resemble 
fetal ECG. Afterwards, noise is added to the signals using 
a set of abdominal measurements of an ongoing study of 
which the study protocol is described in [10]. In some of 
these measurements, the fetal ECG was impossible to be 
detected either because of the shielding of the fetus by the 
vernix caseosa or because some electrodes were far from 
the fetal heart. These cases, after suppression of maternal 
ECG and powerline interference, were considered as pure 
noise and added to the adult ECG for fetal ECG 
simulation. The SNR of the simulated dataset ranges from 
-15 to 15dB. Finally, the signals are separated in training 
and test data, ensuring that there is no overlapping 
between them.  The real fetal ECG was recorded on 6 
channels by the Nemo Healthcare fetal monitor, operating 
at 500 Hz sampling rate, as described in [10]. 

Figure 3. Denoising result in 2 channels of a real non-
invasive fetal ECG recording. 

The signals of all datasets were pre-processed before 
entering the network, either for training or for testing. The 
fetal ECG extraction is performed by using the open-
source algorithm of Varanini [11] and all the signals are 
resampled to 500Hz to have a common reference. Then, 
they are divided in segments of 1920 samples and finally 
are normalized to have zero mean and unity standard 
deviation.  
 
4. Results and Discussion 

The proposed network is trained until convergence is 
reached and subsequently evaluated in the test dataset. 
The correlation coefficient measured between the 
corrupted and the clean signals increased to 0.8 when 
compared to 0.6 prior to denoising. Some representative 
denoising results in the test signals are shown in Figure 2. 
As can be seen in the figure, for cases of lower noise 
(Figure 2(a), (b) and (c)) the network not only suppresses 
the noise significantly but also reveals the ECG waves to 
an extent that the similarity with the ground truth is very 
high, resulting in a correlation coefficient close to 1.  
When the amount of noise is higher (Figure 2(d) and (e)) 
the QRS complexes are usually recovered but there might 
be some distortion in the signal. The smaller waves, like 
the P and T wave, are more difficult to be reconstructed 
reliably. Finally, when the SNR of the signal is really low 
(Figure 2(f)) even the QRS complexes appear difficult to 
recover. It should be pointed out that the network works 
surprisingly well in cases of arrhythmia as can be 
observed in Figure 1(a). This means that the network does 
not simply learn that successive complexes should be 
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rather similar but additionally learns how to preserve the 
variations in individual pulse shapes. 

Figure 3 demonstrates a result when denoising two of 
the channels of a 6-channel real fetal ECG. The denoised 
signals are free from noise and there is some 
correspondence between the waves of the different 
channels. However, since there is no ground truth signal 
available to compare, there is no guarantee that the 
morphological features of the fetal ECG were correctly 
reconstructed. To confirm that the method is able to work 
also in real signals, validation with simultaneous scalp 
measurements is necessary. Even though the scalp ECG is 
a different ECG lead than the abdominal leads and they 
should not be identical, in terms of morphology, 
measured intervals between the denoised signals and the 
scalp ECG should have similar values.  

Despite the limitation in our validation, this is the first 
study to demonstrate fetal ECG signal denoising with 
deep convolutional neural networks (CNNs). One of the 
main advantages of the method is that no prior processing 
of the signal is needed to extract the locations of the R-
peaks as opposed to the widely adopted running 
averaging method. Moreover, individual variations 
among different ECG complexes are preserved. This is 
especially beneficial in arrhythmia cases. So far, 
arrhythmia is assessed through echocardiography because 
the averaging performed to enhance the quality of the 
fetal ECG results in loss of relative information. The 
results of this work show that the fetal ECG can become a 
tool to study arrhythmia cases. In addition, the quality of 
the signals is improved to the extent that can allow for 
measuring the exact timing of morphological features by 
the clinicians, like the PR and QT interval. 

There is certainly room for improvement of our 
method. In cases of very low SNR the results might not 
be reliable since the signal is distorted and some waves 
are not reconstructed accurately or appear to have 
opposite polarity. It might be that the receptive field of 
our network is not large enough to capture enough 
information for denoising such highly corrupted signals. 
However, increasing the receptive field is 
computationally very demanding and thus there is a trade-
off between performance and efficiency. Moreover, we 
currently use merely a single channel for denoising. 
Combing information from multiple channels might 
improve the performance of the network as it will allow 
correlations to extend also in space rather than only in 
time. Finally, including more variations in the ECG 
morphology of the dataset can be beneficial to make the 
network more generalizable. 
 
6. Conclusion 

The proposed deep encoder-decoder framework is able 
to achieve a substantial quality improvement of noisy 
fetal ECG signals. The principal advantage of the method 

is that individual variations among different pulses can be 
preserved and that, opposed to most other fetal ECG 
denoising methods, the method does not require 
knowledge on R-peak locations. 
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