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Abstract 

Personalized arrhythmia simulations have the potential 

to improve diagnosis and guide therapy. Here, we 

introduce a computational framework for personalized 

simulations of ventricular electrophysiology (EP) 

incorporating scar. This framework was utilized in a 

patient who had ventricular fibrillation (VF).  

From delayed enhancement magnetic resonance 

imaging (MRI) an anatomical model was constructed. 

Regions of scar and border zone were segmented by 

thresholding. EP was then simulated using CARPentry. 

The Ten Tusscher ventricular EP model was adapted 

locally to reflect healthy, border zone or scar tissue. In this 

patient, three distinct premature ventricular complexes 

(PVCs) were identified using electrocardiographic 

imaging (ECGI), one of which induced VF. The clinically 

observed PVCs were replicated in the virtual model to 

study arrhythmia development, but VF could not be 

reproduced with a simple stimulation protocol that 

disregarded patient-specific conditions present at the time 

of actual VF induction. This could indicate that not only 

the virtual heart model, but also the stress test may need to 

be personalized for accurate arrhythmia simulations. 

In conclusion, this computational framework enables 

EP simulations based on MRI-detected scar, and allows to 

study the amount of personalization required.  

 

 Introduction 

After decades of academic developments, personalized 

biophysical simulation is reaching clinical application in 

the field of cardiovascular medicine.[1] One promising 

field is that of personalized arrhythmia simulation, which 

may help to predict the need for therapy after myocardial 

infarction (MI) through implantable devices or invasive 

ablation therapy.[2], [3] This typically requires image data 

(such as magnetic resonance imaging, MRI) to detect an 

individual’s substrate for arrhythmias, and personalizing 

an electrophysiology (EP) model with these data to test the 

arrhythmic characteristics of this substrate. However, the 

frameworks to perform these personalized simulations are 

currently very time consuming and labour intensive, 

making them impractical for routine clinical application. 

To release the true clinical potential of these approaches, 

there is a need for a stable, practically applicable pipeline. 

This also allows studying the amount of personalization 

required for accurate arrhythmia simulations. 

 Pipeline 

Elements of an image-based personalized EP simulation 

pipeline include: 1) Image segmentation, i.e., to delineate 

the cardiac structures from an MRI scan, with a separation 

of healthy tissue and diseased tissue; 2) Generating a 

computational mesh from those segmentations; 3) 

Personalizing the electrophysiological properties of that 

mesh; and 4) Performing personalized simulations to study 

arrhythmia mechanisms. Our implementation of these 

elements is described in this paper. 

 Image segmentation 

Our previously described model-based segmentation 

adapts a ‘general’ mesh model of the organ to an image. 

This general heart is represented as a triangulated mesh 

with a fixed number of vertices and triangles. A 

generalized Hough transformation is used to place the 

general heart mesh in the patient’s image. Next, a 

parametric and deformable adaptation is performed using 
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triangle-specific boundary detectors to further tune the 

mesh to the image. [4] 

This approach has been adapted for the simulation 

framework. In particular, the heart mesh was modified to 

include both epi- and endocardial walls for the left and the 

right ventricle. In addition, boundary detectors have been 

trained on cine MR images to enable automatic adaptation 

of the model to images. For boundary detection training a 

recently proposed approach using neural networks and 

deep learning was used. [5] The resulting prototype was 

used to generate an automatic segmentation of left/right 

ventricles/atria. This segmentation was manually adjusted 

to correctly account for the scar and border regions that 

were incorrectly interpreted as blood pool.    

Scar and border-zone regions were segmented using the 

threshold based approach detailed by Schmidt et al [6]. 

Following this approach, representative regions identified 

to determine maximum signal intensities for scar and 

healthy myocardium (Figure 1). The scar was defined as 

voxels with intensities ranging from 50% to 100% of the 

maximum signal intensity (SI) of the scar region. 

Similarly, the border zone was defined as the voxels 

ranging from the maximum SI of the myocardial region to 

50% of the maximum SI of the scar region. Here only 

voxels within the LV and RV boundaries were thresholded.  

Lone thresholded voxels not connected to continuous 

regions were manually removed. 

The 3D geometry of the scar/border zone was then 

reconstructed using the approach detailed by Ukwatta et al. 

[7]: On each axial slice the scar/border zone mask was 

converted using the LogIt function and then interpolated in 

the coronal and sagital directions using an isotropic voxel 

sizing of 0.5 mm (Figure 2). 

 Computational mesh 

A volumetric computational mesh was created from the 

thresholded and interpolated surfaces meshes of the 

healthy myocardium, border zone and scar regions. A 

hybrid meshing approach was adopted in which a mixed 

mesh consisting of tetrahedral, pyramid and hexahedral 

elements was created (Figure 3). Specifically, the Octree 

mesh generator from ANSYS ICEM was used to create a 

mesh with tetrahedral elements at the interface between 

different tissue regions and hexahedral elements in regions 

far from these interfaces. The sizing parameters were 

modified until the average edge length throughout the 

whole mesh was 0.5 mm.  

  

 Electrophysiology simulations 

The electrophysiology properties of this virtual heart 

were studied with simulations based on the monodomain 

formulation as implemented in CARPentry 

(https://carpentry.medunigraz.at/carputils/index.html). In 

the healthy myocardium the ten Tusher ionic model was 

used [8]. In the border zone this ionic model was modified 

by reducing the ion channel current conduction. Here the 

following percentage reductions were adopted following 

Arevalo et al. [2]: GNa -62%, GCaL -69%, Gkr -70% and 

GK1 -80%. Next, the cardiac fibre orientation was 

generated using the rule based approach as detailed by 

Bayer et al. [9] (Figure 4).  

The conductivity parameters in the monodomain 

equations were initialized by matching a conduction 

velocity of 0.6 and 0.3 m/s in the fibre and transverse 

directions, respectively, of a pseudo-1D cable model. This 

cable model only consisted of hexahedral elements; other 

numerical parameters (e.g., time integrator, time step size 

and ionic model) were identical to the whole heart model. 

Following Arevalo et al. [2] the transverse conductivity in 

 
Figure 1. Left: Regions used for sampling scar (red box) 

and healthy myocardial (green box) signal intensity. 

Right: Segmentation of scar (light red) and border zone 

(dark red) by thresholding.  

 

 
Figure 2. Left: Conversion of the scar mask to the LogIt 

function (white) and thresholding of the scar region (red). 

Right: Visualisation of the scar/border interpolation out-

of-plane.  

 

 
Figure 3. Left: Computational mesh, with healthy 

myocardium in grey, border zone in green and scar in 

red. Right: Cut view showing the mesh consisting of 

tetrahedral, pyramids and hexahedral elements. 
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the border zone scaled to 90% of the healthy value. Whole 

heart electrophysiology simulations were then performed 

from a single stimulus location. From those, a pseudo-ECG 

was reconstructed from the extracellular potential 

difference between two locations (apical vs basal), Figure 

5. The conductivity values were then scaled until the QRS 

duration was approximately 180 ms to match typical 

literature values for premature beats [10].  

 

 Personalized simulations 

This pipeline was executed in one patient case. This 

male patient of 40 years had myocardial scar after previous 

radiotherapy, with paroxysmal atrial fibrillation (AF). MRI 

revealed the presence of scar tissue. During an isoprenaline 

provocation test, the subject developed frequent premature 

ventricular complexes (PVCs) of three different types. 

Whereas the first two types occurred frequently without 

any consequence, the single occurrence of the third type 

directly resulted in ventricular fibrillation (VF), which 

required electrical cardioversion. During the provocation 

test, electrocardiographic imaging [11] was performed to 

determine the origin of the three distinct PVCs. The 

personalized virtual heart model was then triggered from 

the same three locations to study whether it was possible 

to replicate the clinical observation. The trigger protocol 

followed the stimulation protocol described by Arevalo et 

al. [2] In short, for each of the three locations a baseline 

pacing with 600 ms cycle length (CL) was followed by an 

extra stimulus with decreasing CL until no capture was 

possible anymore. If no arrhythmia was induced, the 

shortest CL with capture was followed by another series of 

stimuli with decreasing CL until an arrhythmia developed 

or a maximum train of four extra stimuli was reached. 

For the two PVC locations that did not show a VF 

induction in the patient, it was impossible to induce an 

arrhythmia in the simulation. Interestingly, also for the 

PVC that clinically induced an arrhythmia, the virtual heart 

was not inducible (Figure 6). This may be caused by 

several factors: 

• The baseline pacing of the virtual heart model was 

based on single-location stimuli, while the 

patient’s baseline ventricular rhythm was 

conducted through the heart’s conduction system 

ensuring a quick, homogeneous activation and 

recovery of the ventricles. The recovery substrate 

may therefore be quite different between the 

patient’s actual and virtual baseline rhythm. 

• The localization of the PVC origins was executed 

through ECGI, which is known to have a 1-2 cm 

inaccuracy. [11] Additionally, our implementation 

of ECGI does not differentiate between epicardial 

or septal origins. This locational variability may 

play an important role in the trigger-substrate 

relationship. 

• The episode of VF occurred during AF and 

isoprenaline provocation; both conditions are 

 
Figure 4. Visualisation of the fibre orientation in 

different planes. 

 

 
Figure 5. Pseudo-ECG resulting from the baseline 

conductivity values (tuned to a cable), and pseudo-ECGs 

resulting from increased conductivities (to 130, 140 and 

150% of cable-tuned conductivity) to arrive at realistic 

QRS width. 

 

 
Figure 6. Activation time isochrones (with 5 ms 

contours) for a simulated beat in the personalized 

geometry. 
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currently not included in the virtual heart model. 

All these elements require further personalization of the 

stress test, and may be essential to arrive at truly personal 

arrhythmia understanding. An easy-to-apply framework as 

described here provides an essential basis for such 

understanding. 

 Discussion 

In this study, we have introduced the first steps towards 

a robust and clinically applicable EP modelling framework 

that can be personalized by incorporating MRI-detected 

substrate to study its arrhythmogenic consequence. This 

personalized framework allows to study the interaction 

between triggers and substrate in a controlled environment. 

It highlights the potential need for further personalization 

to obtain a more thorough, patient-specific understanding 

of arrhythmia mechanisms leading to sudden life-

threatening arrhythmias such as VF.  

It remains an open question what amount of 

personalization is required for these models. We have 

employed the common approach here, which includes only 

personalizing the distribution of scar, border zone and 

healthy tissue. The EP characteristics of these regions such 

as ion channel distribution and tissue conductivity are 

based on (averaged) cohort data. Similarly, the fibre 

orientation is not personalized but based on a rule-based 

approach. Consequently, one may also wonder how 

complex these personalized simulations need be for 

accurate arrhythmia simulations. The Ten Tusscher model 

employed in this study is relatively complex and 

computationally demanding, whereas EP characteristics of 

the different regions are based on limited data and not 

personalized. A simpler ionic model may capture similar 

AP changes with less computational effort, but it should be 

studied whether this would still provide similar accuracy at 

an individual level.  

Additionally, the cardiac mesh is built from 10mm-thick 

MRI slices which may miss essential parts of a re-entry 

circuit such as microchannels. Isovolumetric 3D MRI with 

submillimetre level may provide more insight in the scar 

distribution, but this technique is currently not widespread 

available in a clinical setting.  

Moreover, next to model personalization also the stress 

test may be further personalized by including the heart’s 

conduction system, by including drug testing, by including 

comorbidities such as AF, and by investigating a larger 

range of trigger locations. 

In conclusion, we have demonstrated the first steps 

towards a practically applicable computational framework 

for personalized EP simulations, illustrated with a patient 

case. Open questions remain on the level of detail and 

personalization required to capture the full complexity of 

arrhythmogenesis and should be tuned to the relevant 

clinical goal. The semi-automatic pipeline introduced in 

this paper sets the stage to study these questions in a robust 

manner that allows future extension to clinical application. 
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