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Abstract

Objectives: For a more comprehensive clinical pic-
ture, measuring vital signs with multiple devices is advan-
tageous due to the acquisition of complementary informa-
tion (ECG, body movement, temperature and respiration)
and the possible compensation of signal loss. Our aim is
to find a robust way for the correction of sampling frequen-
cies and the alignment of non-synchronized sensors.

Methods: We used data from an experiment includ-
ing five different devices, which simultaneously measured
the activity of the heart and other vital parameters (Hex-
oskin Hx1 Smart Shirt, SOMNOtouch NIBP, Polar RS800
Multi, eMotion Faros 360◦, NeXus-10 MKII). Our align-
ment procedure is based on pairwise comparisons of 300
consecutive heart beat intervals to the Hexoskin reference
interval sequence, using minimization of the overall abso-
lute sum of differences for alignment. Robust linear regres-
sion fits were used to adjust for general deviations in the
sampling frequencies and for non-linear resampling in a
sliding window.

Results: Altering sampling frequencies were identi-
fied in Faros and Polar devices in the course of experimen-
tal measurements in all of 13 subjects. SOMNOtouch and
NeXus had the lowest standard deviation across all sub-
jects. In two identical Faros devices, the average sampling
frequency was +0.0293% and +0.0175%.

1. Introduction
Tracking heart activity via ECG is standard in research

and in daily hospital routine. The invention and develop-
ment of smaller sensor technology facilitates the collection
of ECG data without sacrificing quality. Measuring heart
rate variability (HRV) is one way to objectify stress via
physiological data [1]. Therefore a broad range of equip-
ment is used to measure HRV. Chest straps, Holter ECG
systems, even sensor-equipped shirts and smart watches
are used. As a consequence, instruments appear in dif-
ferent shapes, sizes, numbers of electrodes and different

sampling frequencies. Comparability of data acquired with
different platforms thus becomes an issue. Numerous algo-
rithms for data fusion exist to increase robustness, see [2].
Some algorithms utilize simple cross correlations, while
others utilize neuronal networks to solve the data fusion
problem. Difficulties arise from the imperfection and di-
versity of sensor technology, outliers, spurious data, op-
erational timing and data alignment/sensor management
[2, 3]. Data alignment seems to be a common problem
in spectral analysis, chromatography, NMR spectroscopy
and similar fields [4–6]. For physiological ExG data (such
as ECG, EEG, EMG, EOG) there are some further aspects
that need special consideration. Significant problems are
noisy measurements due to body movement, muscle activ-
ity or overlapping of signals. As a result of using different
sensor technologies, placement and instruments, the am-
plitude and morphology of the ECG signal varies between
instruments. Another big problem might be preprocessed
data and artefact correction, or the appearance of measure-
ment artifacts that could result in missing data, such as “out
of sequence” measurements [2].

The aim of our study was to measure the validity of var-
ious ECG measurement systems in the field. We therefore
collected data from subjects wearing various instruments
simultaneously, to allow a direct comparison of measure-
ments. Each instrument had its own sampling frequency
and the recording cannot be started simultaneously. The
aim of this paper is to demonstrate a workflow in which
ECG data can be sufficiently aligned through non-linear
resampling to get an extensive data set of all measured fea-
tures (including secondary features like acceleration, tem-
perature, and respiration). To reach the goal of our study it
is not necessary to fuse multiple different data streams into
one, but the main challenge is to properly align them based
on the common heart beat measurement. Even though in
our study the correlation between the different sensor tech-
niques should be close to 1 (because measurements are
done in the same person for each instrument), it might
be difficult to use simple cross-correlation algorithms like

Computing in Cardiology 2019; Vol 46 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2019.031



correlation optimized warping (COW) [5] or automatic
time-shift alignment (ASTA) [7] to align the data. A rea-
son to refrain from correlation-based alignment methods
is substantiated by different morphology across the ECG
leads due to different sensor placements. In particular the
most prominent characteristic in ECG signals, the QRS
complex, is contributing fewer values to the computation
of cross-correlations due to its fast duration compared to
the T wave or inter-beat segments. Morphology disagree-
ments in these subordinate characteristics would dominate
the cross-correlation and hence would bias the alignment.
We therefore rely on a simple and robust procedure mak-
ing use of beat-to-beat intervals (RR intervals), described
in the following.

2. Experiment description
Study design Seven female and six male volunteers par-
ticipated in this study. Written informed consent was
obained from all participants and the study was approved
by the ethics committee of the University of Greifswald
(Identifier: BB 171/17). After applying all five instru-
ments (starting with the adhesive electrodes, finishing with
the Hexoskin shirt) as illustrated in Figure 1, participants
took place on the treadmill and got secured. After a
short instruction a 5min baseline measurement in stand-
ing rest was followed by 5min walking at a constant pace
of 1.2m/s. Equipped with a backpack and headphones,
the third part of the experiment was a 5min cognitive task.
The participants were asked to vocalize a shifted sequence
of numbers starting with the first number when the third
number was played (auditory 2-back paradigm, see [8]).
The last part of the study was a physical exercise, walking
5min on the treadmill with 1.2m/s and a 15% gradient.
Between the different phases, participants were asked to
answer the NASA Task Load Index to measure individual
strain [9]. To sample the start of each phase a trigger point
was set using eMotion Faros 360◦.

3. Data processing
Preprocessing Preprocessing and data analysis were
conducted using Matlab R2019a. We imported the sig-
nals with header information from raw and processed out-
put files (wav files of Hexoskin export, hrm file for Polar
watch, EDF files otherwise) and stored the data in a struc-
tured array. First, we applied a moving average filter to
the ECGs for downsampling. For baseline removal, we
applied a 25%-trimmed mean filter with a window size of
200ms, which acts as a high-pass filter. Next, standard-
ization transformed the signals to a unit-less signal. After
annotation of the hear beat using an open source heart beat
detector [10]1, we searched for the R peak in the immedi-

1Available via https://github.com/MarcusVollmer/HRV/
blob/master/singleqrs.m
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Figure 1. Illustration of sensor placement and specifica-
tions of five recording devices: Hexoskin Hx1 Smart Shirt,
SOMNOtouch NIBP, Polar RS800 Multi, eMotion Faros
360◦, NeXus-10 MKII. Body silhouette designed by Freepik.

ate surrounding of the raw signal to compensate for the un-
certainty from downsampling. We computed RR intervals
for each signal respectively. After that, intervals suspected
to be adjacent to irregular heart beats or unreasonable in-
tervals in noisy segments were removed from the interval
sequence by NaN-replacement. This was done using a fil-
tering method based on relative RR intervals [11].

Furthermore, we discovered a wrong sampling fre-
quency (8000Hz instead of 8192Hz) stored in the EDF
files of our Nexus device, which we corrected manually
and before the following alignment task. We also identi-
fied wrong artificial RR intervals in the Polar recordings.
These offsets within the RR interval sequence were also
corrected in advance.

Alignment of multi-sensored data Hexoskin’s ECG
was used as the reference ECG channel to which all other
sensors were aligned to (chosen after manual screening
of signal quality and first analysis of sampling frequency
constancy). We performed the alignment of RR interval
sequences by searching for the best local alignment of a
short segment of 300 beats from a resting state period (the
sequence with the lowest heart rate). We then searched for
a time shift d for which s, the mean absolute difference to
the reference annotation, reached its minimum value. We
took into account that some of the heart beats could be
misplaced due to noise, or could not be identified at all.
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Therefore, s is based only on matched beats which differ
not more than 300ms. To speed up the process of find-
ing the exact value, our search was divided into two parts.
First, we identified a rough estimate of d by finding the best
sequence alignment matching the first beat of the reference
sequence to any beat of the second RR interval sequence in
the way that almost all following beats had an appropriate
match. In a second step we refined d by adding small val-
ues between −100ms and 100ms to adjust for the case,
that the first beat does not accurately match the aligned
beat from another signal.
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Figure 2. The delay d to align sensors is defined by finding
the minimum of the sum of absolute pairwise differences
si for a pair of beat annotation sequences.

Linear correction of sampling frequencies Inaccuracy
in given sampling frequencies may result in linear drifts of
pairwise differences of aligned heart beats, see Figure 3.
We therefore corrected the sampling frequency of the sec-
ond sensor. This was done by computing the slope of
a robust linear regression fit (iteratively reweighted least
squares with a bisquare weighting function) from the 300
matched beats of the resting period. Next, we transformed
the resulting slope b into a constant factor for persistent
adjustment of the sample frequency:

f̂s = fs · (1− b) (1)
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Figure 3. Inaccurate sampling frequencies can be cor-
rected by using the slope of a robust regression fit of Pair-
wise differences of annotations si.

Non-linear correction of sampling frequencies The
first aligned signal matrix was generated by applying time
shift d and the resampling of the signals using f̂s. Next,
we performed a manual annotation of all R peaks for the
reference sensor given the credibility from all other aligned
ECGs. Based on the manual annotation, we then continued
with a non-linear resampling process by computing contin-
uous beat-to-beat differences between the RR interval se-
quences as illustrated in Figure 4. We assumed that the
sampling frequency from built-in frequency transmitters
of the recording devices are only capable to vary slowly
(depending on temperature changes and the battery level).
Consequently, we excluded outliers through moving me-
dian and performed a robust quadratic regression to iden-
tify local changes in the sampling frequency. The smooth
curve of beat-to-beat-differences was interpolated to get a
sample-based corrective value to adjust for the local fre-
quency (red line). Finally, these values were used to cor-
rect the x-values of the ECG time series and served as input
coordinates to linearly resample all signals of a device to
the reference frequency of 256Hz. We computed the min-
imum, maximum, average and standard deviation of ac-
tual persistent sampling frequencies among all participants
for comparison with the manufacturers’ specifications and
checked visually for time-varying changes.
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Figure 4. Pairwise differences of beat locations after lin-
ear correction. Polar and Faros had inconstant fs and was
corrected by using a robust regression fit (red lines) for re-
sampling.

4. Results
We included 13 participants in our study. We adjusted

and investigated variations in sampling frequencies pair-
wisely as described above. The robust regression fit as
shown in Figure 4 quantifies heterogeneous fs in Polar and
Faros devices. In this recording of a subject, beat-to-beat
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differences start with a 20ms delay, decline towards 0ms,
rise to 30ms and drop down below zero until the end of
the experiment. We observed such behavior, but in differ-
ent non-linear ways, in all of our 13 recordings. In case of
the Polar device, we observed a drift of the pairwise dif-
ferences especially at the stage of walking five minutes on
the treadmill with a 15% gradient. Table 1 shows the ac-
tual sampling frequencies among all 13 subjects when us-
ing Hexoskin’s ECG sensor as the reference sensor. Faros
and Polar showed the highest spread across the whole ex-
periment. The clinical devices SOT and NeXus showed
a fixed correction factor across 13 subjects, speaking of a
stable and precise frequency transmitter.

Table 1. Manufacturer’s specifications and actual sam-
pling frequency (Hexoskin assumed to be have precise fs).
Two Faros’ devices in use, f̂s splitted according to de-
vice ID.

Recording Device fs Mean f̂s (min to max)

SOT NIBP 512 511.97 (511.97,511.97)
Faros 360◦, ID1 1000 1000.29 (1000.19,1000.36)
Faros 360◦, ID2 1000 1000.18 (1000.15,1000.21)
NeXus-10 MKII 8000 7999.67 (7999.67,7999.68)
Polar RS800 Multi 1000 999.91 (999.87, 999.95)

5. Discussion & Conclusions
The incorporation of multiple devices measuring the

same entity allows self-verification, increases credibility,
and increases resolution of experimental data. Other ad-
vantages are the increased range and variety of different
sensors, measured at different body positions, in different
quality, and resolutions. We used ECG sensors of each
device to carry out the correction of time shifts and non-
linear adjustment of sampling frequencies on the basis of
RR intervals. For Polar and Faros, we have revealed vary-
ing sampling frequencies for which we have no sound rea-
son. According to the eMotion Faros series manual 2.3.0,
Faros “is suitable for use in an electromagnetic environ-
ment” with a recommended safety distance of 1.2m to
portable and mobile radio sets. In our experiment, Faros
was nearby Hexoskin and Polar devices, sending continu-
ously in-time measurements via Bluetooth, which might
violate the recommended safety distance. Devices for
medical usage (Nexus, SOT) showed more precise sam-
pling frequencies than other devices primary made for per-
sonal use (Hexoskin, Faros, Polar). Inaccurate and varying
sampling frequencies can have a severe impact in particu-
lar in long-term measurements. A change of only 0.01Hz
would result in a measurement delay of 70.3ms after 30 ′

of measurement. This is even more serious in experimen-
tal setups, when the time of events (e.g. induced events,
visual perception, drug intake) are tracked simultaneously
with different devices.
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