
Multi-Frequency Model Fusion for Robust Breathing Rate Estimation

Soumaya Khreis1, Di Ge1, Jian Zhu2 and Guy Carrault1
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Abstract

Breathing rate (BR) is an important physiological in-
dicator monitored for a variety of chronic diseases. Since
direct measurement devices are often cumbersome to wear,
we hence aim to obtain an accurate estimation of BR us-
ing other monitored signals, such as PPG or ECG. How-
ever, derived modulations from these signals are highly
dependent on patient and activity type, making the task
difficult as to switching among the modulations. We have
previously proposed respiration quality index(RQI) based
selection method to update the optimal modulation in a
realtime manner. A fusion strategy has also been pro-
posed by coupling the RQI with a Kalman smoother to fur-
ther exploit the sinusoidal waveforms observed from dif-
ferent modulations. In the current study, we further inves-
tigate the enhancement of model complexity of the Kalman
smoother by introducing multiple frequency dynamics.
Performances are compared to reference methods (Pi-
mentel2016, Karlen2013) on the Capnobase Benchmark
dataset. In particular, our enhanced KS method achieves
a median absolute error and 25−75 percentile range of
0.22(0.16− 0.64) bpm, as compared with 0.35(0.28 0.89)
bpm from our previous KS fusion method and 1.1(0.3 2.6)
bpm from the best reference method in the literature
(Karlen et al. 2013).

1. Introduction

Breathing rate (BR) is one important indicator of phys-
iological deterioration. Abnormal BR prevents unwanted
chronic diseases such as renal failure, respiratory or car-
diac arrest, pneumonia [1]. Direct measurement by the
capnography, impedance plethysmography and flow ther-
mography are often uncomfortable to wear, especially for
long-term monitoring[2]. On the contrary, its indirect es-
timation can be achieved from the photoplethysmography
signal (PPG), for which the acquisition is much simpler.
Respiration activities also modulate heart rate variability
under the name of respiratory sinus arrhythmia (RSA),
causing respiration-induced amplitude variations[3], [4].

Indirect estimation of BR from derived modulations is a
difficult task due to the noise artifacts and patient-specific

activities. It is also based on factors such as age, gender
and cardiopulmonary system function [5]. Previous stud-
ies have been focused on the development of either the sig-
nal quality index (SQI) or the respiratory quality indices
(RQI), aiming at selecting the best modulation.

We, on the otherhand, believe that merging multiple
modulation signals should be more pertinent in terms of
information retrieval instead of combining RQI values as
in [6] that selects one single modulation for BR estima-
tion. In our previous work [7], we proposed an Kalman
smoother with a single-frequency component model to fu-
sion pre-selected modulations with highest RQI scores.
Significant improvements have been observed in terms
of median and interquartile absolute estimation error. In
this paper, we further enhance the model with multiple-
frequency component and compare our results with the
previous fusion method and reference methods using the
benchmark CAPNOBASE.

2. Materials and methods

The flowchart for BR estimation from ECG/PPG sig-
nals is presented in Fig. 1. The method consists in ex-
tracting and selecting respiratory modulations with highest
RQI scores, their fusion using a multi-frequency compo-
nent model in the Kalman smoother and finally peak and
trough detection of the fused modulation for BR estima-
tion. In the following, we will briefly describe the Cap-
nobase dataset used for comparison study, the preprocess-
ing steps (modulation derivation and selection with RQI),
detailed in [7, 8] and the BR estimation step on the fused
modulation. We focus in this paper on the enhancement of
fusion model by including multiple frequency components
and its comparison with the single-frequency fusion model
in different scenarios .
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Figure 1: Flowchart of the proposed approach
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2.1. Database

For pertinent performance comparison and easy access
of gold standard, the CAPNOBASE dataset was used
in our study as previously. It consists of 8min simul-
taneous PPG and ECG signal and BR reference from
the capnography waveforms (http://www.capnobase.org/)
recorded from 42 subjects during elective surgery or rou-
tine anesthesia. For our analysis, each recording is divided
into non-overlapping windows of 32s duration and perfor-
mances are compared to two reference methods (Karlen et
al. [9], Pimentel et al. 2016 [10])

2.2. Preprocessing and respiration quality

Three derived modulations are extracted from PPG sig-
nals (RIIV, RIAV and RIFV) as proposed by [10] or ECG
signals (RPA, QRA, RSA, AQRS) [6, 11, 12]. These
modulations are calculated for 15 non-overlapping 32s-
windows for each 8-min recording in the Capnobase and
are then filtered with a 5-th order Butterworth band-pass
filter ([0.083, 1] Hz) and down-sampled to 4 Hz as in [10]
(see typical results in Fig. 2).

(b)	

Figure 2: Modulations from PPG (RIIV, RIAV and RIFV), with higher
quality (left) and lower quality (right)

The Respiratory Quality Indexes (RQIs) quantify the
respiration modulation quality. In the current study,
we tested the fourier transform (RQIFT), auto-correlation
(RQIac) proposed by [6] and sinusoidal model index
(RQIsinus) from our previous paper [8] based on the nor-
malized mean squared error (NMSE) of the residual error
of the sinusoidal model:

RQIsinus =

√√√√∑N
n=0

(
yn − Â cos(2πf̄n+ θ̂)

)2
Â2

, (1)

yn = A cos(2πf̄n+ θ) + bn, (2)

for which f̄ = fR/fs is the normalized frequency obtained

from the periodogram. Â and θ̂ are the maximum likeli-
hood estimates assuming bn to be i.i.d. Gaussian:

θ̂ML = arctan

{
−
∑N−1

k=0 yn sin(2πf̄n)∑N−1
n=0 yn cos(2πf̄n)

}

ÂML =

∑
yn cos(2πf̄n+θ)∑
cos2(2πf̄n+θ)

≈ 2

N

N−1∑
n=0

yncos(2πf̄n+θ̂ML).

Smaller RQIsinus values suggest closer fit to the sinusoidal
model and better periodicity.

As shown in our previous study [7], selection of mod-
ulations based on RQI scores is necessary to trade-off be-
tween the modulation quality and quantity for the fusion
purpose. We adopt the optimized RQI thresholds for eas-
ier comparison.

2.3. Fusion with Kalman smoother

The Kalman Smoother algorithm consists of a Kalman
filter followed by a fixed interval smoother [13]. The fil-
ter algorithm recursively updates the estimation of a state
process Xn, given observation Yn of the dynamic system:

Xn+1 = FXn + Wn (3)
Yn = HXn + Vn (4)

where Xn is the state vector and Yn the measurement vec-
tor containing all selected modulations in our application.
The random processes Wn and Vn are supposed indepen-
dent, zero-mean white Gaussian: Wn ∼ N (0,Q) and
Vn ∼ N (0,R). In the current application, we choose a
time invariant formulation for which the state transition
matrix F, the measurement matrix H as well as covari-
ance matrices Q and R do not change in time within the
32s segment. The Kalman filter minimizes the squared er-
ror expectation of the estimated state vector by calculating
the conditional expectation X̂n = E[Xn|Y1:n] in a filtered
manner. With a reversed order, the fixed interval smoother
further refines the estimation based on all available obser-
vations Y1:N by calculating the posterior conditional ex-
pectation X̂n = E[Xn|Y1:N ]. We have studied and vali-
dated the fusion method with the KS algorithm in [7] based
on a single-frequency component model for the i-th se-
lected modulation: yin =Ai cos(2πf̄n+θi)+oin+bin. Sig-
nificant improvements are observed with comparison to the
state-of-the-art methods, independently of the RQI chosen.

Compared to the single-frequency component fusion
method, the key difference here is to consider the i-th se-
lected modulation containing two frequency components:
yin = Ai

1 cos(2πf̄1n+θi1)+Ai
2 cos(2πf̄2n+θi2)+oin+bin

with f̄1, f̄2 the normalized frequencies, Ai
1, A

i
2 the am-

plitudes, θi1, θ
i
2 the phases, bin the observation noise and oin

the baseline wonder. Note that all input modulation signals

Page 2

http://www.capnobase.org/


are modeled with the same frequencies as a result of res-
piration modulations but differ in amplitudes and phases.
This model is motivated from the spectral representations
of typical respiration signals illustrated in Fig. 3, for which
multiple frequency modes lie in the band of [0.083, 1] Hz.

(a)

(b)

(C)

Figure 3: Examples of respiration signals (left) and its PSD (right).

We deduce in the following the case of 2-input fusion
without loss of generality. First we define the state vector:
Xn=

[
cos(2πf̄1n), sin(2πf̄1n), cos(2πf̄2n), sin(2πf̄2n), o1n, o

2
n

]t
The transition matrix F can be directly deduced from
Xn+1 = FXn + Wn:

F=


cos(2πf̄1) − sin(2πf̄1) 0 0 0 0
sin(2πf̄1) cos(2πf̄1) 0 0 0 0

0 0 cos(2πf̄2) − sin(2πf̄2) 0 0
0 0 sin(2πf̄2) cos(2πf̄2) 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Allowing a 10% variation on each component of Xn

through Wn yields the covariance matrix:

Q =


0.12 0 0 0 0 0

0 0.12 0 0 0 0
0 0 0.12 0 0 0
0 0 0 0.12 0 0
0 0 0 0 (0.1× o1n)2 0
0 0 0 0 0 (0.1× o2n)2


The observation matrix H links the observation (modula-
tion) vector Yn =

[
y1n, y

2
n

]t
and the state vector Xn as

defined in the multi-frequency model:

H =

[
A1

1 cos θ11 −A1
1 sin θ11 A1

2 cos θ12 −A1
2 sin θ12 1 0

A2
1 cos θ21 −A2

1 sin θ21 A2
2 cos θ22 −A2

2 sin θ22 0 1

]
The observation noise covariance matrix R is supposed to
be diagonal by assuming independent noise/artefact influ-
ences in different modulation signals.

To initialize the Kalman smoother for each 32s-segment,
we need to update {f̄1, f̄2, Ai

1, A
i
2, θ

i
1, θ

i
2, σ

2
1 , σ

2
2} to con-

struct F, H, Q and R. As in the calculation of RQIsinus,

frequencies can be estimated using the periodogram on the
modulation with highest RQI scores whereas amplitudes
and phases are the ML estimates and MSE of model resid-
uals can be used for noise variance estimations.

3. Results

3.1. Enhancement due to the KS

First of all, we are interested in proving the exact im-
provements made by the Kalman smoother fusion. To do
this, we compare final BR estimation results with those
obtained from the KS initialization step, where f̄1, f̄2 are
calculated using the periodogram on the modulation with
highest RQI score. In Fig. 4, ∆1 represent absolute er-
rors from the initialization while ∆2 those from the fused
modulation. It is noteworthy that the reduction in AE is
systematic for all tested RQI and the main improvements
occur in the range of 10− 30 bpm, that stands for the ma-
jority of Capnobase recordings.

(a) For different RQI

(b) for different BR range (with RQIFT)

Figure 4: Absolute error before (∆1) and after (∆2) KS

3.2. Comparison with reference methods

We report the BR estimation performance comparison
with two state of the art methods in the literature [9, 10]
and our previous paper [7] in Tab. 1 for both PPG and ECG
signals from the Capnobase. We note that no comparable
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results are reproduced in the literature for ECG signals, for
which we have implemented and optimized the reference
methods. The best obtained results are from the smoothing
with 2-frequency model using RQIac, with a median and
25−75 percentile range of 0.26(0.12− 0.61) bpm for PPG
and 0.22(0.16− 0.64) bmp for ECG signals.

Median and 25− 75 percentile AE (bpm), PPG
1 Freq model 2 Freq model

Prop method
RQISINUS + KS 0.32 (0.17-0.52) 0.26 (0.12-0.61)
RQIFT + KS 0.34 (0.19-0.73) 0.27 (0.13-0.57)
RQIAC + KS 0.54 (0.33-0.54) 0.26 (0.12-0.61)
Ref methods
Pimentel (2016) 0.9 (0.5-3.5)
Karlen (2013) 1.1 (0.3-2.6)

(a)
Median and 25− 75 percentile AE (bpm) on ECG

1 Freq model 2 Freq model
Prop method
RQISINUS + KS 0.36 (0.25-0.55) 0.27 (0-0.63)
RQIFT + KS 0.34 (0.25-0.51) 0.24 (0.15-0.41)
RQIAC + KS 0.35 (0.28-0.89) 0.22 (0.16-0.64)
Ref methods
Pimentel (2016) 1.4 (0.8-3.6)
Karlen (2013) 1.1 (0.3-2.6)

(b)

Table 1: BR estimation error (median and interquartile in bpm) with
PPG (a) and ECG (b) from the CAPNOBASE.

4. Discussion/ Conclusion

The extraction of BR is directly related to the period-
icity in the derived modulations. Different methods have
been proposed in the literature for estimating BR based on
derived PPG/ECG modulations.

In this paper, we propose to further develop the peri-
odic modulation waveform model to include up to two
frequency components in the Kalman smoother. We have
shown the benefits from the KS, and the model complex-
ity separately from previous studies. We emphasize that in
addition to the apparent performance gains achieved with
the Capnobase, our proposed methods do not depend on
specific parameter tuning on any database. This prop-
erty is consistant with our previous paper [7], in which
performance improvements are significant across different
databases.

This method represents an important step towards future
challenging works, including ambulatory physical activity
and neonatal monitorings. Its validation in both ECG and
PPG signals is essential from the point of information fu-
sion under highly artifacted environments.
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