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Abstract 

Accurate QRS location keeps challenging in dynamic 

electrocardiograms (ECGs). This study addressed this 

issue and developed a novel faster R convolutional neural 

network (CNN) model-based real-time QRS detection 

algorithm. Firstly, ECGs were segmented into 10-s length 

episodes, and each episode was transformed into a 2-D 

image with a pixel size of 200200 (VOC2007 format). 

Labelled QRS location information was used to generate 

the QRS bounding boxes. A faster R CNN model was 

constructed. Candidates of QRS bounding boxes were 

extracted by the region proposal networks (RPN). Then, 

the boxes with small probabilities were excluded according 

to the rules of probability distribution and QRS location 

relationship. Finally, locations of QRS complexes were 

determined based on the geometric features and threshold 

rule. The proposed algorithm was trained on the MIT/BIH 

arrhythmia database and verified on the 24-h wearable 

ECGs. Five-fold cross validation on 24-h wearable ECG 

recordings from 20 subjects generated a sensitivity of 

98.76%, a positive predictivity of 98.52% and an accuracy 

of 97.32% compared to the manual annotations. In 

addition, the cost time of the new algorithm for processing 

a 10-s ECG episode was less than 20 ms under the 

experiments of CPU i7-2600 3.40 GHz, 8 GB RAM, tesla 

M60 GPU and 16 GB graphics memory.  

 

1. Introduction 

Electrocardiogram (ECG) is a comprehensive 

manifestation of cardiac electrophysiological activity, 

providing important information about the state of cardiac 

function [1]. Therefore, automatic diagnosis of static or 

long-term dynamic ECG is essential for doctors and 

patients. The accurate QRS recognition algorithm is the 

basis for automatic ECG analysis, which is important for 

the prevention and diagnosis of heart diseases [2, 3]. 

However, QRS detection in dynamic ECG, especially in 

wearable ECG, has encountered significant challenges due 

to motion disturbances, ECG electrode contact and 

myoelectric noise [4]. QRS detectors must be able to 

correctly detect different forms of QRS with large amounts 

of noise. However, the anti-noise and anti-interference 

ability of existing QRS detection algorithms is not strong 

enough [5, 6]. 

In general, in order to accurately identify the QRS 

complex, it is necessary to effectively pre-process the 

original ECG, which can suppress power frequency 

interference, myoelectric interference, respiratory 

interference and baseline noise, and help identify QRS 

complexes [7], such as Pan-Tompkins algorithm [8]. Kim 

and Shin [9] developed spatiotemporal characteristic-based 

detector, where the maximum energy level within the 5-25 

Hz frequency band was accepted to belong to QRS 

complexes. Christov’s QRS detector [10] used the 

information from more than one simultaneously recorded 

channels, with three special threshold rules: adaptive slew-

rate, correction depending on the presence of high-

frequency noise and low amplitude QRS complexes [11]. 

Although various QRS detectors have been developed, 

their anti-interference and anti-distortion abilities still need 

to be improved, especially when considering to combine 

some machine learning methods. This paper proposes a 

faster R convolutional neural network (CNN) model-based 

real-time QRS detector to address this problem. 

 

2. Methods 

2.1. Data 

MIT/BIH arrhythmia database was used as training 

dataset. Wearable ECG data collected from a portable ECG 

device was used as test dataset, which included the 24-h 

ECGs from 20 patients with different arrythmia types. All 

collected wearable ECG data were labeled by two 

independent cardiologists and arbitrated by a third. 

 

2.2. Generation of QRS region of interest 

To apply the fast R CNN model, ECG signal has to be 

transformed into 2-D images. Firstly, ECG signals were 

segmented into 10-s segments. Secondly, in order to 

remove baseline drift and power frequency interference, a 

0.5-40 Hz band pass filter was applied to the 10-s ECG 

segments. Thirdly, normalization was applied to normalize 
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the ECG amplitude within 0 and 1, which can eliminate the 

adverse effects caused by the noises. Then, 1-D data was 

transformed into 200200 pictures through the matplotlib 

tools in Python. Finally, since the width of the QRS is 

usually about 120 ms, the rectangular range of the QRS 

complex was limited 100 ms forward and 100 ms backward 

at the position of R peak. Fig. 1 shows the process of 

generating ECG image datasets. Fig. 2 demonstrates an 

example of QRS bounding boxes in the ECG image. 
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Figure 1. Generation of ECG samples for the faster R 

CNN-based QRS detector. 

 
Figure 2. An example of QRS bounding boxes (red 

rectangles) within a 10-s ECG segment. 

 

2.3. Faster R CNN Model 

As shown in Fig. 3, a 10-s ECG 2-D image (200×200) 

was first put into the feature extraction network of VGG16, 

which included 13 convolution layers, 13 rectified linear 

units (RELU) layers and 4 pooling layers. Then the feature 

maps were put into a regional proposal networks (RPN) 

network [12], which included two branches. The top 

branch obtained foreground (QRS region of interest (ROI)) 

and background by the softmax function. The low branch 

calculated bounding box regression offset to get accurate 

proposals [13]. ROI pooling layer mapped the proposals 

to the feature map and resized these regions into same size 

sections by max pooling operation [12]. The classifier 

layers got the precise locations of QRS complexes by the 

fully connected layers and softmax function.  
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Figure 3. Model structure of the proposed faster R CNN-based QRS detector. VGG16 is used for feature extraction, RPN 

layer is used to select candidate targets, ROI pooling layer maps the proposals to the feature map.  

    

 

2.4. Parameter setting 

Before training, we need to pre-set several parameters. 

The loss function of fast R-CNN is set as: 

        𝐿({𝑝𝑖}，{𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) +𝑖

                                       𝛾
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)𝑖 .                  (1) 

where 𝑡𝑖 = {𝑡𝑥, 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ} is a vector representing anchor's 

predicted offset, 𝑡𝑖
∗ is the same one-dimensional vector as 
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𝑡𝑖 , representing the actual offset of anchor relative to 

ground truth, 𝑝𝑖  is the probability of anchor prediction, and 

𝑝𝑖
∗ represents the ground truth.  

There are two parts in formula (1), the first part is the 

classification loss and the second part is bounding box 

regression loss. Classification loss is cross-entropy loss 

function, which means calculating logarithmic loss for 

each anchor and dividing the sum by the total number of 

anchors
1

𝑁𝑐𝑙𝑠
 . Usually, 𝑓(𝑥) = 𝑥2  is chosen in Bounding 

box regression. However, this loss function will be very 

high if large errors are encountered [14]. Therefore, slightly 

flat absolute loss function, i.e., 𝑓(𝑥) = |𝑥| , is applied 

herein, which increases linearly with the error rather than 

squarely. The derivative of this function does not exist at 0, 

which has a bad influence on the convergence of functions. 

Piecewise function is introduced to make it smoother by 

using square function near 0, named smooth L1 loss 

function. In this study, the smooth L1 loss function is 

defined by 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2 ×

1

𝜎2 , 𝑖𝑓|𝑥| <
1

𝜎2

|𝑥| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,            (2) 

where x represents the difference between the actual offset 

of the border and the predicted offset 𝑥 = 𝑡𝑖 − 𝑡𝑖
∗ and 𝜎 =

3. Learning rate was set 0.001, Gradient descent method 

with momentum was chosen as optimization method. 

  

2.5. QRS location with the model output 

ROI of QRS information can be obtained by the 

proposed fast R-CNN Model. As is shown in Fig. 2, the R 

peaks are located inside the red rectangles. The slope of 

QRS is the most obvious feature [15]. In order to extract 

the location of QRS more accurately, the bilateral slope 

method was used to precisely locate the position of R peaks: 

𝑠𝑙𝑜𝑝𝐿𝑖 = 𝑒𝑐𝑔𝑖 − 𝑒𝑐𝑔𝑖−4,                    (3) 

𝑠𝑙𝑜𝑝𝑅𝑖 = 𝑒𝑐𝑔𝑖 − 𝑒𝑐𝑔𝑖+4,                    (4) 

where 𝑠𝑙𝑜𝑝𝐿𝑖  and 𝑠𝑙𝑜𝑝𝑅𝑖 indicate the left and right slopes, 

respectively, 𝑒𝑐𝑔𝑖  represents the ECG amplitude. 

 

3. Results and discussion 

Five-fold cross validation on the MIT/BIH arrhythmia 

database achieved a sensitivity (Se) of 99.24% and a 

positive predictivity (+P) of 99.90%, resulting in an 

accuracy (Acc) of 99.14%, as shown in table 1. When tested 

on the twenty 24-h wearable ECG recordings, the 

algorithm generated a Se of 98.76%, a +P of 98.52% and 

an Acc of 97.32% compared to the manual annotations.  

From Tables 1 and 2, we can see that the proposed fast 

R-CNN algorithm can well perform the QRS detection task. 

Although trained on the MIT/BIH arrhythmia database, the 

QRS detector can still have a good performance on 

wearable ECG data, which shows a strong generalization 

ability.  

 

Table 1. Five-fold cross validation results on the MIT/BIH 

arrythmia database.  

Fold TP FP FN Se (%) +P (%) Acc (%) 

1 19059 64 78 99.59 99.67 99.26 

2 18916 7 131 99.31 99.96 99.28 

3 21542 21 257 98.82 99.9 98.73 

4 26449 2 195 99.27 99.99 99.26 

5 20823 10 164 99.22 99.95 99.17 

Mean / / / 99.24 99.90 99.14 

SD / / / 0.08 0.02 0.05 

Table 2. Results of the proposed QRS detector on the 

twenty 24-h wearable ECG recordings. 

#subject TP FP FN Se 

(%) 

+P 

(%) 

Acc 

(%) 

1 132957 1229 624 99.53  99.08  98.63  

2 100345 392 542 99.46  99.61  99.08  

3 73028 1664 312 99.57  97.77  97.37  

4 98905 1383 906 99.09  98.62  97.74  

5 133725 793 3907 97.16  99.41  96.60  

6 97811 1417 2492 97.52  98.57  96.16  

7 115364 58 540 99.53  99.95  99.48  

8 67346 1698 958 98.60  97.54  96.21  

9 77003 1097 625 99.19  98.60  97.81  

10 107291 1624 1288 98.81  98.51  97.36  

11 110539 4653 1943 98.27  95.96  94.37  

12 79257 2061 488 99.39  97.47  96.88  

13 97228 255 217 99.78  99.74  99.52  

14 108798 448 992 99.10  99.59  98.69  

15 97133 1356 1682 98.30  98.62  96.97  

16 71810 3213 1497 97.96  95.72  93.84  

17 86631 677 689 99.21  99.22  98.45  

18 70608 1308 1118 98.44  98.18  96.68  

19 114731 893 2164 98.15  99.23  97.40  

20 110933 1047 2140 98.11  99.07  97.21  

Mean / / / 98.76  98.52 97.32 

SD / / / 0.55 1.34 2.24 

 

We also tested the calculation cost. The cost time of the 

new algorithm for processing a 10-s ECG episode was less 

than 20 ms under the experiments of CPU i7-2600 3.40 

GHz, 8 GB RAM, tesla M60 GPU and 16 GB graphics 

memory. The new QRS detector should be carried out on 

GPU, and thus the resource consumption is large. It still 

needs to be optimized in resource consumption to facilitate 

the practical use in the future.  
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Traditional QRS detection methods are usually affected 

by noise and QRS shape, which is hard to improve +P and 

Se simultaneously. In the contrary, the new QRS detector 

can deal with the QRS detection under different noise 

situation, generating an increase of +P and Se 

simultaneously. In addition, the proposed method can not 

only used for QRS detection, but also has potential for 

other feature identification, such as T waves, P waves.  

 

4. Conclusion 

This study presents an effective QRS detection method 

based on Fast R CNN model, which generated a sensitivity 

of 98.76%, a positive predictivity of 98.52% and an 

accuracy of 97.32% on the actually collected twenty 24-h 

wearable ECG recordings. It is only a polit study, and more 

work need to further improve the issue of resource 

consumption. 
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