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Abstract 

The present work aims to present a comparative study 

of the performance of different kernels for mathematical 

modeling and morphological classification of the QRS 

complex of the ECG signal. Initially, we use a simulator to 

generate synthetic signals from dynamic models 

containing variations within a set of physiological 

parameters. From the generation of twenty different types 

of QRS morphology, computing tests for mathematical 

modeling of the beat waveform (Q, R and S waves) were 

performed. For that, the following mathematical functions 

are employed: Gaussian function, Mexican Hat function 

and Rayleigh probability density function. Subsequently, 

10 real signal records from the MIT-BIH (Massachucetts 

Institute Technology - Beth Israel Hospital) Arrhythmia 

database have their QRS complex morphologies also 

modeled by the proposed mathematical functions. The 

preliminary results demonstrate the proposed 

mathematical functions with adjustable parameters can be 

applied together for modeling and automatic classification 

of some QRS morphologies commonly present in real 

signals, with efficiency and precision. The computing of 

normalized RMS error allows the identification of the 

model which is more appropriate to a given morphology, 

which can change over the same patient record. 

 

1. Introduction 

Automatic ECG feature extraction comprises a set of 

steps that begin with the detection and segmentation of 

their characteristic waves. Correct detection of QRS 

complexes and their delineation are fundamental 

conditions for the efficient detection and segmentation of 

the other characteristic ECG waves. In addition, they 

provide the basis for cardiac arrhythmia pattern 

recognition algorithms [1]. 

It is relevant to mention that the ECG signal tracing 

presents a plethora of possible formats, depending on the 

situations and physical-emotional conditions, the noise 

from the environment, each individual itself, the 

modulation of the amplitude of the signal, according to 

breathing and noise of electro-surgical devices. 

In this sense, there have been many advances related to 

the automatic extraction of ECG signal parameters and 

currently there is a large number of pathophysiological 

diseases that can be diagnosed with the aid of engineering 

tools and techniques, allowing the increased use of the 

ECG signal in daily life. 

Determining the polarity of QRS deflections has 

extremely relevant implications for several diagnostic 

criteria and is fundamentally important for the 

electrocardiogram electrical axis calculation. As far as 

polarity is concerned, the QRS complex may be positive, 

negative or isodiphasic. The QRS complex is positive 

when the height of the largest positive wave (R or R') is 

greater than the depth of the largest negative wave (Q or 

S). In turn, the QRS complex is negative when the height 

of the largest positive wave (R or R ') is lower than the 

depth of the largest negative wave (Q or S). Finally, the 

QRS complex is isodiphasic when the height of the largest 

positive wave and the depth of the largest negative wave 

are similar [2]. 

The master thesis developed by [3], also available from 

the Physionet website, suggests twenty possible classes for 

QRS morphologies: qR, qRs, Rs, R, RS, rSR', rR', qrSr', 

RSr', rR's, rS, rSr', Qr, QS, QR, qrS, qS, rsR's', QRs, and 

Qrs. Thus, automatic recognition of different QRS 

morphologies through mathematical modelling provides to 

obtain a rich set of features related to QRS waveform and 

also discriminate certain types of arrhythmias and 

conduction disorders. 

  Based on this assumption, this work aims the modeling 

and morphological classification of the QRS complex of 

the ECG signal contributing to the dissemination of the 
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study of the electrocardiogram in the academic and 

scientific space. 

 

2. Methodology 

In the development of the research, the following steps 

were followed: 

1. Computing implementation of artificial ECG signal 

generation algorithms with variable parameters, including 

mean and standard deviation of interval between beats, 

characteristic wave morphology (PQRST cycle) and signal 

to noise ratio, taking as initial reference the technique 

developed by MCSHARRY et al. in [4]. Simulated noise 

insertion algorithms were also elaborated on the 

synthesized ECG signals, corresponding to the baseline 

oscillations, mains interference (50-60 Hz carriers), 

muscle contraction and Gaussian white noise; 

2. Literature review concerning computational methods 

for classical linear and nonlinear filters and application of 

the Wavelet transform to eliminate ECG noise; 

3. Implementation of QRS complex detection and 

segmentation algorithms over artificial ECG signals. It was 

proposed to use the detection methodology based on the 

application of the first derivative function and the Wavelet 

and Hilbert transforms, in combination with the adaptive 

threshold technique [5]. 

 The segmentation process was based on the calculation 

of an indicator related to the area covered by the QRS 

envelope. The envelope corresponds to the analytical 

signal obtained from the serial application of the Wavelet 

transform and the first derivative function on the ECG 

signal (real part) and the application of the Hilbert 

transform on the resulting signal (imaginary part) [5]. 

4. Modeling of the QRS complex on synthesized 

artificial ECG signals based on the applied mathematical 

models. The mathematical models used for evaluation and 

experimental modeling test of the QRS complex are: 

Gaussian function, Mexican Hat function and combination 

of Rayleigh Probability Density functions. To determine 

the performance of the tested kernels, the normalized RMS 

(Root Mean Square) error is computed. 

5. Implementation of QRS complex detection, 

segmentation and modeling algorithms over ten 30-minute 

reference real-time signal records from the MIT-BIH (Beth 

Israel Hospital) Arrhythmia database. 

 

2.1. Proposed Mathematical Models 

Having in mind that real ECG waveforms are 

intrinsically asymmetric and even distorted by interference 

and physiological noise, it is intuitive that mathematical 

functions should acquire a certain degree of distortion for 

becoming able to fit physiological signal. 

Thus, the first mathematical model corresponds to the 

combination of two Gaussian functions. A single discrete-

time Gaussian function may be defined as [6] 

 

    𝐺𝜎1
[𝑘] = 

1

√2𝜋𝜎1
𝑒𝑥𝑝 (−

𝑘2

2𝜎1
2) .                 (1) 

 

The mathematical model resultant from 

combining two discrete-time Gaussian functions with 

individual width parameters 𝜎1 and 𝜎2 is, therefore, given 

as 

 

𝐺𝜎1,𝜎2
[𝑘] = {

𝐺𝜎1
[𝑘], −𝑥1 ≤ 𝑘 ≤ 0

𝐺𝜎2
[𝑘], 0 ≤ 𝑘 ≤ 𝑥2

                  (2) 

 

The second mathematical model corresponds the 

second derivative of the first mathematical model, that is, 

a modified Mexican Hat function, once the original one is 

symmetric. Therefore, given a function 𝐺𝜎1,𝜎2
[𝑘] derived 

from the combination of two Gaussian functions, the 

second mathematical model 𝐺𝜎1,𝜎2
𝑑 [𝑘] may be obtained as 

a second order progressive divided difference 

 

𝐺𝜎1,𝜎2
𝑑 [𝑘] =

𝐺𝜎1,𝜎2
[𝑘+1]−2.𝐺𝜎1,𝜎2

[𝑘]+𝐺𝜎1,𝜎2[𝑘−1]

𝑇𝑠
2    (3) 

 

where 𝑇𝑠 represents the sampling period. 

Finally, we define a discrete-time Rayleigh 

probability density function 𝑅𝜎1
[𝑘] within the interval 0 ≤

𝑘 ≤ ℎ 

 

                                    𝑅𝜎1
[𝑘] =

𝑘

𝜎1
2 𝑒𝑥𝑝 (−

𝑘2

2𝜎1
2)               (4)      

where 𝜎1 is the corresponding variable parameter. 

 

Then, the next three mathematical models corresponds to 

three different combinations of two Rayleigh functions: 

Rayleigh cycle positive/negative, Rayleigh cycle 

negative/positive and Rayleigh cycle positive/positive. 

 

Concerning the third mathematical model, we obtain a 

composition of two Rayleigh functions, denoted 𝑅𝜎1,𝜎2
[𝑘], 

0 ≤ 𝑘 ≤ 2ℎ. We depart from the definition of two 

discrete-time Rayleigh probability density functions 

𝑅𝜎1
[𝑘] and 𝑅𝜎2

[𝑘]so that 

 

𝑅𝜎1,𝜎2
[𝑘] = {

𝑅𝜎1
[ℎ − 𝑘],   0 ≤ 𝑘 ≤ ℎ

−𝑅𝜎2
[𝑘 − ℎ], ℎ ≤ 𝑘 ≤ 2ℎ

                        (5)    

 

The other two mathematical models correspond to 

variations of the third matematical model, being the fourth 

one (Rayleigh cycle negative/positive) given as 

 

𝑅𝜎1,𝜎2
[𝑘] = {

−𝑅𝜎1
[ℎ − 𝑘],   0 ≤ 𝑘 ≤ ℎ

𝑅𝜎2
[𝑘 − ℎ], ℎ ≤ 𝑘 ≤ 2ℎ

                       (6) 

and the fifth one (Rayleigh cycle positive/positive) given 
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as 

 

𝑅𝜎1,𝜎2
[𝑘] = {

𝑅𝜎1
[ℎ − 𝑘],   0 ≤ 𝑘 ≤ ℎ

𝑅𝜎2
[𝑘 − ℎ], ℎ ≤ 𝑘 ≤ 2ℎ

            (7) 

 

After detecting each QRS complex within a given 

ECG record, it is possible to establish search windows 

centered in each QRS fiducial point (R-wave peak) aiming 

to investigate which model is more appropriate for a given 

predominant morphology. By an exhaustive search, we 

achieve to fit each model within a given morphology and 

compute a normalized RMS error between a given QRS 

segment and a given fitted model. The winner 

mathematical model is the one which allows to obtain the 

lowest normalized RMS error, which may be computed as 

 

𝜀 = √
∑ |𝑊𝑋[𝑘]−�̃�𝑋[𝑘]|²𝐿

𝑘=1

∑ 𝑊𝑋[𝑘]²𝐿
𝑘=1

                                      (8) 

 

where 𝑊𝑋[𝑘] refers to the signal window for which we 

desire to fit a model, and �̃�𝑋[𝑘] refers to the evaluated 

kernel. 

 

3. Results and Discussion 

    Based on parameter adjustments of the dynamic models 

proposed by [4], it was possible to generate 60 samples of 

each of the QRS morphologies predominantly found in the 

literature, varying amplitude and phase of the waves Q, R 

and S: qR, qRs, Rs, R, RS, rSR, rR´, qrSR´, RSr´, rR´s, rS, 

rSr´, Qr, QS, QR, qrS, qS, rsR´s´, QRs and Qrs. 

    For each of the tested mathematical models, a 

morphology, among the twenty considered, was identified 

in which a given model has the lowest RMS error in the 

Ranking, as shown in Table 1. Figure 1 illustrate three 

different QRS morphologies generated by the 

implemented computing simulator: rS, rSr’ and qrS.. 

   Table 2 presents the detailed modeling results for each of 

the 20 QRS morphologies considered on the synthetic 

signals, with the corresponding winning kernel. 

  

 

 
Figure 1. QRS morphologies rS, rSr’ and qrS from 

synthetic ECG signals. 

 

 

 

 

 

Table 1. Ranking of lowest RMS error. 

 

Mathematical 

Model  

QRS 

Morphology 

RMS Error 

Gaussian  R 4,67%± 1,22 % 

Mexican-hat rsR´s´ 18,36%± 0,94 % 

Rayleigh RS 10,23%± 3,1 % 

 

Table 2. Modeling results for each of the twenty common 

QRS morphologies on synthetic ECG signals 

 

QRS 

Morphology 

Winning 

kernel 

RMS Error 

qR Gaussian 17,94% ± 0,72% 

qRs Mexican-hat 20,06% ± 1,43% 

Rs Rayleigh +/- 20,23% ± 4,16% 

R Gaussian 4,67% ± 1,22% 

RS Rayleigh +/- 10,23% ± 3,10% 

rSR` Rayleigh -/+ 17,02% ± 3,91% 

rR´ Rayleigh +/- 27,08% ± 2,76% 

qrSr´ Rayleigh +/- 19,56% ± 1,61% 

RSr´ Rayleigh +/- 15,01% ± 3,46% 

rR´S Rayleigh +/- 26,97% ± 2,27% 

rS Rayleigh -/+ 18,37% ± 0,55% 

rSr´ Mexican-hat 19,93% ± 2,88% 

Qr Rayleigh +/- 11,95% ± 1,79% 

QS Gaussian 6,09% ± 1,69% 

QR Rayleigh -/+ 11,96% ± 3,78% 

qrS Rayleigh -/+ 14,71% ± 2,47% 

qS Rayleigh +/+ 23,29% ± 1,77% 

rsR´s´ Mexican-hat 18,36% ± 0,94% 

QRs Rayleigh -/+ 18,80% ± 2,05% 

Qrs Rayleigh +/- 14,95% ± 1,08% 

 

Table 3 presents the results of applying the QRS complex 

modeling algorithm over 10 real signal records from the 

MIT-BIH Arrhythmia Database, considering the 

mathematical models Gaussian function (Model 1), 

Mexican Hat function (Model 2), Rayleigh Positive + 

Negative Cycle (Model 3), Rayleigh Negative + Positive 

Cycle (Model 4) and Rayleigh Positive + Positive Cycle 

(Model 5). It is relevant to note that in all modeling 

application results detailed in Table 5, only the first 

channel of the ECG signals was used, and from the five 

mathematical models tested, the winning model presented 

a percentage of occurrence above 70% for all cases. 

 

Table 3. Modeling algorithm application results for a set of 

real signals from the MIT-BIH Arrhythmia Database 

Record  Winning 

Model 

Hit 

Percentage 

RMS Error 

234  1 94,25% 7,56%± 1,74 % 

220 3 99,21% 22,01%± 3,58% 

219 3 79,55% 9,71%± 3,34 % 

217 1 79,78% 12,74% ± 8,15% 
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215 3 94,31% 20,87% ± 4,79% 

212 1 81,90% 12,41% ± 3,86% 

209 3 95,41% 18,07%± 4,74% 

202 1 91,88% 10,81% ± 17,16% 

201 1 75,57% 19,55% ± 29,05% 

123 3 80,59% 19,45% ± 3,85% 

 

As an illustrative example, Figure 2 presents the 

predominant morphology in record 209 from MIT-BIH 

Arrhythmia Database, modeled by Rayleigh Positive + 

Negative Cycle (Model 3). 

 

 
Figure 2. QRS predominant morphology from record 209 

(MIT-BIH Arrhythmia Database) modeled by Rayleigh 

Positive + Negative Cycle (Model 3). 

 

4. Conclusion 

The wide diversity of QRS complex morphologies 

(around 20, according to the literature), characterizes the 

task of classification and recognition as extremely 

challenging. From the results achieved, it was observed 

that the proposed mathematical functions with adjustable 

parameters can be applied together for modeling and 

automatic classification of beat morphologies commonly 

present in real signals, with efficiency and precision. The 

normalized RMS error computing allows the 

differentiation and identification of the most appropriate 

model for a given morphology, which can alternate over 

the same patient record. The next step of the research is to 

use the parameters provided by the mathematical models 

as well as the normalized RMS error values computed for 

each model as input data for a classifier to be constructed 

from machine learning techniques for cardiac disease 

pattern recognition.  
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