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Abstract

This study aimed to find whether there is a causal rela-
tionship between band power time series (BPts) extracted
from EEG and heart rate variability (HRV). Such relation-
ships were explored during spontaneous and a controlled
breathing tasks. Data analyzed were recordings obtained
from 14 healthy subjects using one ECG lead and 21 EEG
channels. The RR intervals from the ECG were used to
obtain the HRV signal, which was decomposed with Em-
pirical Mode Decomposition into components of different
spectral content known as intrinsic mode functions (IMFs).
Granger causality tests were run for the BPts of alpha,
beta and gamma frequency ranges of the EEG signal and
the HRV signals IMFs. G-causality increased for three dif-
ferent conditions: slower IMFs (IMF4), BPts of higher fre-
quency (gamma) band and during task realization. Mean-
ing, gamma’s BPts G-caused HRV for a larger number of
subjects and channels. Also there was a larger incidence
on the number of channels that G-caused HRV during the
controlled breathing task. The causal influence from the
BPts of EEG signals to the HRV IMFs suggests there is
an indirect or unobserved interaction between instanta-
neous changes on EEG band power and components of
HRV which may explain changes in its dynamics.

1. Introduction

The central autonomic network (CAN), is an inter-
connected ensemble of structures that controls autonomic
functions like heart rate, respiratory efforts, hormone se-
cretion among others, aiming to preserve homeostasis
[1, 2]. CAN structures are located on different levels
of autonomous nervous system: insular and medial pre-
frontal cortices, amygdala, hypothalamus, periaqueductal
gray matter, locus coeruleus, parabrachial nuclei, retic-
ular formation, dorsal vagal, ambiguus, tractus solitar-
ius and Raphe nuclei, and Rostral ventrolateral medulla
[1, 3]. CAN has control over outflows of sympathetic
and parasympathetic branches influencing heart rate vari-

ability (HRV). Observing HRV is therefore a useful tool
to explore autonomic nervous system (ANS), nevertheless
a full comprehension of the phenomenon has not been
achieved [2, 4]. Yet, it is commonly accepted that spec-
tral analysis allows to study effects of the two branches:
sympathetic, on low-frequency band (LF, [0.04 – 0.15]
Hz) and parasympathetic, on high-frequency band (HF,
[0.15 – 0.4] Hz). Affectations on cerebral cortex have
secondary effects on cardiovascular systems, for example,
stroke could produce cardiac arrhytmias and even sudden
death if affected region is neighboring CAN structures (in-
sular or prefrontal cortices) [3]. Autonomic system disor-
ders could have manifestation on HRV indices like tachy-
cardia or fixed heart rate, producing cardiac autonomic
neuropathy. Polisomnographic studies have shown an in-
teraction between indices derived from EEG signal and
HRV, Jurysta et al. [5] found a relationship between va-
gal activity and delta band of EEG. Kuo et al. [6], showed
that beta power is a descriptor of autonomic activation dur-
ing NREM sleep. Some authors have suggested analy-
sis of EEG and HRV signals could be useful to explore
CAN without an invasive intervention. Schieke et al. [7]
and Piper et al. [8], analyzed data derived from children
with temporal lobe epilepsy, both suggest an interaction
between epileptogenic networks and CAN producing ar-
rhythmias prior to seizure episode. Liou et al. have worked
with autonomic dysfunction: Parkinson’s Disease [9] and
uremic patients [10]. Both works suggest a relationship be-
tween EEG’s band power and HF and LF components of
HRV, despite significant correlations were found they are
below 0.5. In a previous work of our group, de la Cruz-
Armienta et al. [11] demonstrated that for healthy sub-
jects a Granger causality relationship exists from HRV to
BPts, with a channel distribution depending on respiratory
tasks. On this work, a new set of experiments were real-
ized, analysis includes separation of HRV components and
extending analysis over gamma band, from BPts to HRV.
The obtained results confirm those of previous work, sug-
gesting cortical CAN centers have larger than recognized
relationship with sympathetic activity.
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2. Materials and Methods

The experimental paradigm for this study was the same
as the one used by de la Cruz-Armienta on 2017 [11].

Data recording implied 2 stages:
1. Idle state: the subject was awake, sat down with

eyes closed, listening to a mild story (The Origin of Evil
by Fiodor Dostoyevski) during 8 minutes.

2. Controlled breathing task: the subject was awake, sat
down with eyes closed, listening to a guiding sound that
indicated the duration and rhythm of each inspiration and
expiration he/she must take, during 8 minutes.

Data analyzed were extracted from a database of 14
healthy subjects (age 21±2 years, 7 females); according
to inclusion criteria, subjects were non-smokers, did not
take any alcoholic beverages nor medication for at least 24
hours prior the study, did not practice any cardiovascular
exercise, got at least 6 hours of sleep the night before the
study and had normal BMI.

21 EEG channels and one ECG lead were recorded us-
ing Neuroscan 4.5 amplifier at a sampling rate of 1000 sps.
From the international 10-20 system, the following were
used: Fp1, Fp2, F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4,
CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1 and O2. The ECG
lead was obtained by placing the precordial electrodes V1
and V2. Fpz corresponded to ground for both EEG and
ECG and the common references were A1 and A2.

The ECG signal was extracted by subtracting the signal
recorded by V2 from the V1 signal. Joachim Behar’s QRS
detector based on the P&T method was used to obtain the
indexes of the RR peaks [12]. The HRV signal was then
interpolated at a sampling frequency of 10 sps using a cu-
bic spline. Lastly, the HRV signal was decomposed into
IMFs using the Empirical Mode Decomposition method, a
typical register during breathing control task is shown on
Figure 1.

  

Figure 1. An example of HRV signal and HRV IMFs,
scaled for better appreciation

The band power time series (BPts) were estimated
for alpha ([8-12]Hz), beta ([12-30]Hz) and gamma ([30-
100]Hz) bands with a sliding window of 2 seconds and
a sliding step of 0.1 seconds using Welch periodogram
method achieving a 10 sps frequency synced with HRV.
The BPts estimation consists on obtaining the signal’s fre-
quency spectrum and calculating the relative power for
each frequency band, therefor the BPts show the distri-
bution of power according to the components composing
the signal. Figure 2 shows the BPts obtained for alpha,
beta and gamma frequency ranges from a register during
controlled breathing task.

Figure 2. An example of BPts of the EEG

Finally, a Granger causality test was run from the BPts

of each EEG frequency range to the HRV IMFs, for each
of the stages recorded. A causal correlation found between
two signals does not imply a physical connection, but de-
tects causality relationship from the first signal to the sec-
ond. This method is based on a linear reggresion model of
stochastic processes and was obtained using Seth’s Matlab
toolbox [13, 14].

3. Results and Discussion

A G-casual relation was found between the BPts of al-
pha, beta and gamma waves and the HRV IMFs; in contrast
with Schieke and Piper works’, who found a larger correla-
tion with delta band. Tests with surrogate data from HRV
were run achieving no G-causal relation, which suggests a
real inference from BPts to HRV sympathetic components.
As seen on Figure 3, G-causality increased significantly for
slower IMFs (IMF4) as well as for higher EEG frequency
(gamma) bands. Row A on the figure corresponds to idle
state and row B to the breathing control task, showing there
was a larger incidence on the number of channels that G-
caused HRV during the controlled breathing task.

Table 1 shows the proportion of subjects that had a G-
causal relation from each frequency band BPts to the dif-
ferent HRV IMFs, for the channel(s) with the highest in-
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Figure 3. G-causality from each channel of alpha’s and gamma’s BPts to HRV IMFs 1 and 4. Row A corresponds to idle
state and row B to the breathing control task.

Table 1. Channel(s) where the highest number of subjects had G-causality from EEG BPts to HRV IMFs. The first set of
values corresponds to the results during idle state whereas the sets in bold correspond to the controlled breathing task.

IMF1 IMF2 IMF3 IMF4
α P3,O1 (2/14) F3,T5,P4,O1 (3/14) Fp2,Fcz,Cz,O2 (6/14) C3 (8/14)

Cz (2/14) F3,Fc3,Fc4 (5/14) Fp1,T5 (6/14) F3 (8/14)
β O2 (2/14) C3 (6/14) O1 (8/14) Fc3 (9/14)

Fp2,F4,Fc4,C3,C4 (1/14) Fp1 (7/14) Fp1 (8/14) Cz (8/14)
γ T5,Pz (3/14) Fc4 (6/14) F4 (6/14) Fp2,C3 (7/14)

C3,Cz (3/14) Fp1 (7/14) Fp1 (7/14) Fp1,O2 (7/14)

cidence. The first set of locations and values in each row
corresponds to the results during idle state whereas the sets
in bold correspond to the breathing control task results.

For most cases of the controlled breathing task, Fp1
was the channel with the largest number of subjects for
which G-causality was stated; this may show the BPts of
the waves (most pertaining to gamma’s frequency range)
found near the left hemisphere’s portion of the prefrontal
cortex, influence HRV dynamics. This correlates with the
distribution of CAN centers at the cortex as well as with
the fact that all of the channels with the highest number of
G-causalities found for the controlled breathing task were
located on the anterior cortex. During idle state, the loca-
tions of the highest incident channels were more scattered
than those on the controlled breathing task and were pos-
sibly not as exacerbated due to a lower activity on those
centers. Nevertheless, for both conditions G-causality was
found on several channels located on the right hemisphere
of the cortex, this lateralization phenomenon agrees with
findings of Piper, where patients with right temporal lobe
epilepsy present major alterations on HRV dynamics.

Table 1 shows how, for every condition and frequency
range, the channels influencing IMF4 had the highest in-
cidence of subjects with a true G-causality. As mentioned
before, IMF4 corresponds to the slowest frequency mode

from the HRV decomposition; lower frequencies are asso-
ciated with sympathetic nervous system activity, meaning
changes on EEG power due to the sympathetic activity of
the ANS alter the low frequency HRV components.

Figure 4. HRV IMFs’ mean relative power during idle
state

Figures 4 and 5 show the population mean HRV spec-
tral components’ relative power for LF and HF ranges ac-
cording to their IMF. During idle state IMFs were clearly
separated, whereas for the controlled breathing task, IMFs
overlapped mainly at LF and were not clearly divided onto
the frequency ranges defined. Table 1 shows how, during
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Figure 5. HRV IMFs’ mean relative power during breath-
ing control task

idle state, faster IMFs (IMF1) were G-caused by channels
located on the posterior part of the cortex, while the slower
IMFs (IMF4) were caused by channels found on the ante-
rior cortex. Channels that G-caused IMFs during the con-
trolled breathing task did not show this changes in distribu-
tion and, as mentioned before, were all found on the frontal
lobe, this leads to believe there is relation between activity
on the anterior cortex and low frequency or sympathetic
activity in the heart. Also, these may help explain the dy-
namics of the CAN activity as well as its regulation of the
parasympathetic and sympathetic branches while adapting
heart rate to changes in breathing.

4. Conclusion

There is a causal influence from the BPts of EEG signals
to the HRV IMFs that leads to believe there is an indirect
or unobserved interaction between instantaneous changes
on EEG band power and components of HRV. Knowing
this interaction might be useful for a better understand-
ing of HRV analysis in different applications, since it may
help explain or predict changes in its behavior. This tool
could be used to explore relationships in different contexts
such as hemodyalisis, diabetes, Parkinsons or other sys-
temic diseases that have affectations on nervous systems
and homeostatic condition.
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