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Abstract 

The magnitude of the spatial ventricular gradient 
(MSVG) is an attractive parameter in electrocardiogram 
(ECG) monitoring applications.  

The MSVG is most commonly obtained from 150 Hz 
low-pass filtered resting ECGs. However, monitoring 
applications typically utilize 40 Hz low-pass filtered ECG 
data. The extend to which the value of the MSVG is 
affected by the utilization of 40 Hz low-pass monitoring 
ECG filters over the commonly used 150 Hz low-pass 
resting ECG filters has not previously been reported.   

The aim of this research was to quantify the 
differences between MSVG values computed using 40 Hz 
low-pass filtered ECG data (MSVG40) and 150 Hz low-
pass filtered ECG data (MSVG150). The differences 
between the MSVG40 and the MSVG150 were quantified 
as systematic error (mean difference) and random error 
(span of Bland-Altman 95% limits of agreement) using a 
study population of 726 subjects. The systematic error 
was found to be 0.013 mV ms [95% confidence interval: 
0.008 mV ms to 0.018 mV ms]. The random error was 
quantified as 0.282 mV ms [95% confidence interval: 
0.266 mV ms to 0.298 mV ms].  

Our findings suggest that it is possible to record 
accurate MSVG values using 40 Hz low-pass filtered 
ECG data. 

 
 

1. Introduction 

The spatial ventricular gradient (SVG) can be 
computed from the Frank vectorcardiogram (VCG) [1]. 
The SVG has previously been described [2] as a measure 
of the ventricular action potential heterogeneity. More 
precisely, the SVG has been described to reflect the 
heterogeneity in the ventricular action potential duration 
as well the heterogeneity of the ventricular action 
potential morphology. An increase in ventricular action 
potential heterogeneity has been reported to be associated 

with an increased risk of ventricular arrhythmias [3] and 
previous research [4] has identified an association 
between the magnitude of the SVG (MSVG) and the risk 
of ventricular arrhythmias. The association between the 
MSVG and the risk of ventricular arrhythmias can be of 
potential interest in applications that require the 
utilization of the monitoring electrocardiogram (ECG). 

A requirement for the determination of the MSVG is 
the availability of the Frank VCG. Modern 
vectorcardiography commonly derives the Frank VCG 
from the resting standard 12-lead ECG [5], which is 
recorded using distal limb-electrodes that are placed at the 
ankles and wrists of the patient. This approach for the 
determination of the Frank VCG is not suitable for 
monitoring applications as the distal limb leads of the 
standard 12-lead ECG are susceptible to motion artifacts.  

Recent efforts have focused on overcoming the lead 
system related barriers for the recording of the Frank 
VCG in monitoring applications.  This has lead to the 
development of a number of different linear 
electrocardiographic lead transformation matrices [6], [7].  
These transformation matrices allow for the derivation of 
the Frank VCG from different monitoring compatible 
lead sets.  More precisely, these transformation matrices 
utilize (1) to derive or estimate the three leads of the 
Frank VCG using a number of recorded basis leads. 

𝑽𝑪𝑮 = 𝑨 ∙
𝑩𝑳𝟏
⋮

𝑩𝑳𝑴
 (1) 

Where 𝑽𝑪𝑮  is a 3×𝑁 matrix containing 𝑁 sample 
values for each of the three Frank leads, 𝑩𝑳𝟏 to 𝑩𝑳𝑴 
denote 1×𝑁 vectors containing 𝑁 sample values for each 
of the 𝑴 basis leads and 𝑨  is the 3×𝑀 transformation 
matrix. 

The recent availability of these monitoring compatible 
transformation matrices has extended the usability of the 
MSVG from resting to monitoring applications.  

Previous studies have quantified the transformation 
matrix related estimation errors of different 
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transformation matrices.  For example, a performance 
comparison of the Kors and the Guldenring matrix found 
similar estimation error levels in Frank VCGs that were 
derived using the resting 12-lead ECG and the monitoring 
compatible Mason-Likar (ML) 12-lead ECG respectively 
[7], [8].   

While the transformation matrix related estimation 
errors that are associated with the utilization of 
monitoring compatible lead sets have been quantified, the 
influence of the different filter strategies used for 
recording monitoring and resting ECGs on the value of 
the MSVG has not fully been investigated. More 
precisely, the influence of the differences in the minimum 
high-frequency cutoff requirement of 150 Hz for resting 
[9] and 40 Hz for monitoring ECGs [10] on the value of 
the MSVG has, to the best of our knowledge, not 
previously been reported in the literature.   

The aim of this research is twofold. First, to quantify 
the difference between MSVG values that are obtained 
from 40 Hz and 150 Hz filtered Frank VCGs. Second, to 
compare this difference to the transformation matrix 
related estimation errors made when computing the 
MSVG from the ML derived Frank VCG.   

 
2. Material and methods 

2.1. Study population 

We base our research on a study population of 726 
subjects.  The study population is composed of 229 
normal subjects, 265 subjects with old myocardial 
infarction and 232 subjects with left ventricular 
hypertrophy.  

 
2.2. BSPM data 

This research was conducted using secondary body 
surface potential map (BSPM) data. A total of 120 ECG 
leads were recorded for each BSPM. All of the 120 leads 
were recorded in reference to the Wilson central terminal.  
Three of the 120 BSPM leads were recorded from 
electrodes placed on the right and left wrist and the left 
ankle. The remaining 117 leads were recorded from 81 
anterior and 36 posterior recording sites. A total of 15 
seconds of continuous ECG data was recorded for the 120 
ECG leads using a sample rate of 500 samples per 
second. One representative average P-QRS-T complex 
was computed for each lead using the 15 seconds of 
continuous ECG data. A comprehensive description of 
the BSPM data and the recording procedure is provided in 
[11]. 

The body surface potentials at anatomic locations that 
correspond to the 352 nodes of the Dalhousie torso [12] 
were calculated for each BSPM.  This was achieved by 

applying a previously reported Laplacian 3D interpolation 
procedure [13] to the 117 thoracic BSPM leads.   

 
2.3. Derivation of the Frank VCG 

The body surface potentials at the A, C, E, F, H, I and 
M electrode locations of the Frank lead system were 
extracted from each of the 726 interpolated BSPMs.  

Body surface potentials at the I and M electrode 
locations of the Frank lead system were not directly 
located at one of the 352 nodes defined by the Dalhousie 
torso.  These body surface potentials were determined 
through linear interpolation of body surface potentials 
located at proximal Dalhousie torso nodes. 

The body surface potentials at the A, C, E, F, H, I and 
M electrode locations were used to derive the three leads 
of the Frank VCG using (2). 

𝑽𝑪𝑮 =
𝑿
𝒀
𝒁

= 𝑨 ∙
𝝋𝑨
⋮
𝝋𝑴

. (2) 

Where 𝝋𝑨, 𝝋𝑪, 𝝋𝑬, 𝝋𝑭, 𝝋𝑯, 𝝋𝑰, and  𝝋𝑴 are 1×𝑁 
vectors that contain 𝑁 sample values of potentials at the 
Frank electrode locations A to M respectively, 𝑁 denotes 
the number of samples in the average P-QRS-T complex, 
𝑨  is a 3×7 matrix of published coefficients [14] that 
allow for a derivation of the Frank VCG using the 
potentials 𝝋𝑨 to 𝝋𝑴, and 𝑽𝑪𝑮  is a 3×𝑁 matrix 
containing 𝑁 sample values of the Frank VCG, the 1×𝑁 
vectors 𝑿, 𝒀 and 𝒁 contain 𝑁 sample values of the three 
Frank leads X, Y and Z respectively. 

 
2.4. Low-pass filtering of the Frank VCG  

One 40 Hz and one 150 Hz low-pass filtered Frank 
VCG was generated for each subject in the study 
population.  This was achieved by applying one 40 Hz 
and one 150 Hz low-pass filter to each of the 726 Frank 
VCGs that were extracted from the interpolated BSPM 
data.  

Filtering was performed using two different phase-
linearized infinite impulse response (IIR) digital low-pass 
filters.  The utilized IIR filters were based upon 6th order 
Butterworth filters with corner frequencies located at 40 
Hz and 150 Hz. These filters were cascaded with group-
delay equalizers to yield an approximately linear phase 
response and avoid filtering artifacts.  Each group-delay 
equalizer was implemented as IIR allpass filter and 
designed using the method described in [15].  The filter 
characteristics (passband average group-delay [16]; 
passband group-delay deviation [16]) of the 40 Hz and the 
150 Hz phase-linearized low-pass filter were quantified to 
as (17.73 samples; 0.90 samples) and (10.90 samples; 
0.29 samples) respectively.  
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2.5. Determination of the magnitude of the 
spatial ventricular gradient 

The MSVG for each of the low-pass filtered Frank 
VCGs was determined using (3) and (4). 

𝑀𝑆𝑉𝐺40! = ∆𝑇 ∙ 𝑽𝑪𝑮𝟒𝟎𝒊(𝑛)!!"#
!!!"#!" . (3) 

𝑀𝑆𝑉𝐺150! = ∆𝑇 ∙ 𝑽𝑪𝑮𝟏𝟓𝟎𝒊(𝑛)!!"#
!!!"#!" . (4) 

Where 𝑽𝑪𝑮𝟒𝟎 is a 3×𝑁 matrix containing 𝑁 sample 
values of each of the three 40 Hz low-pass filtered Frank 
VCG leads, 𝑽𝑪𝑮𝟏𝟓𝟎 denotes a 3×𝑁 matrix containing 𝑁 
sample values of each of the three 150 Hz low-pass 
filtered Frank VCG leads, 𝑄𝑅𝑆!" is the sample index of 
the QRS onset, 𝑇!"# denotes the sample index associated 
with the end of the T wave, 𝑛 ∈ 𝑄𝑅𝑆!" ,… ,𝑇!"#  is the 
sample index, ∆𝑇 denotes the sample interval used when 
recording the BSPM data, 𝑀𝑆𝑉𝐺40 and 𝑀𝑆𝑉𝐺150 refer 
to MSVG values that are determined using 40 Hz and 150 
Hz low-pass filtered Frank VCG data respectively, 
𝑖 ∈ 1,… ,726  is an index variable that is used to indicate 
the MSVG value of the 𝑖-th subject in the study 
population. 

 
2.6. Quantification of the effect of 40 Hz low-
pass filtering on the magnitude of the spatial 
ventricular gradient 

The effect of the 40 Hz low-pass filter on the value of 
the MSVG was quantified using a multistep procedure.  
First, the differences between the 𝑀𝑆𝑉𝐺40 values and the 
𝑀𝑆𝑉𝐺150 values were calculated as detailed in (5). 

∆𝑴𝑺𝑽𝑮 = 𝑴𝑺𝑽𝑮𝟒𝟎 −𝑴𝑺𝑽𝑮𝟏𝟓𝟎. (5) 

Where 𝑴𝑺𝑽𝑮𝟒𝟎 and 𝑴𝑺𝑽𝑮𝟏𝟓𝟎 are vectors that 
contain the 𝑀𝑆𝑉𝐺40! and the 𝑀𝑆𝑉𝐺150! values of all 
subjects in the study population and ∆𝑴𝑺𝑽𝑮 is a vector 
that contains the differences between the 𝑀𝑆𝑉𝐺40! and 
the 𝑀𝑆𝑉𝐺150! values of all subjects in the study 
population.   

Second, the systematic error of the differences between 
the 𝑀𝑆𝑉𝐺40! and the 𝑀𝑆𝑉𝐺150! values was quantified 
by computing the mean [95% confidence intervals (CI)] 
and the median [95% CI] of the values in ∆𝑴𝑺𝑽𝑮.   

Third, the random error component of the differences 
between the 𝑀𝑆𝑉𝐺40! and the 𝑀𝑆𝑉𝐺150! values was 
quantified.  This was achieved by calculating the span of 
the Bland-Altman 95% limits of agreement as detailed in 
(6).   

 

RandomError = 2 ∙ 1.96 ∙ 𝑠𝑡𝑑(∆𝑴𝑺𝑽𝑮). (6) 

Where 𝑠𝑡𝑑(∙) denotes the standard deviation and 

∆𝑴𝑺𝑽𝑮 is as defined in (5).  

The random error component was, in addition to the 
Bland-Altman 95% limits of agreement also quantified as 
the interquartile range [95% CI] of the values in ∆𝑴𝑺𝑽𝑮. 

The 95% confidence intervals for the median value, 
the span of the Bland-Altman 95% limits of agreement 
and the interquartile range of the values in ∆𝑴𝑺𝑽𝑮 were 
determined using bootstrapping. More precisely, 10000 
bootstrap replicates were used to calculate the 
bootstrapped bias-corrected and accelerated 95% 
confidence interval (95% CI) [17] for each of these 
parameters. 

 
3. Results  

The values of the systematic error and the random 
error component that were identified in this research are 
provided in Table 1.  
Table 1. Differences between the MSVG values obtained 
from 40 Hz low-pass and 150 Hz low-pass filtered Frank 
VCG data. 

Parameter Parameter 
value 

95% confidence 
interval 

Random error   
BA limits of agreementa 0.282 [0.266 to 0.298] 
interquartile rangeb 0.091 [0.085 to 0.102] 

   

Systematic error   
meanc 0.013 [0.008 to 0.018] 
mediand 0.015 [0.009 to 0.020] 

Notes. aBland-Altman 95% limits of agreement, binterquartile 
range of the MSVG differences in ∆𝑴𝑺𝑽𝑮, cmean and dmedian 
of the MSVG differences in ∆𝑴𝑺𝑽𝑮. Parameter values and 
95% confidence intervals are given in mV ms. 

 
4. Discussion 

In this research, we have quantified the changes in the 
value of the MSVG due to the application of a 40 Hz low-
pass ECG monitoring filter to directly recorded Frank 
VCG data.  

Our findings suggest that the utilization of a 40 Hz 
low-pass ECG monitoring filter on the recorded Frank 
VCG is associated with a relatively small systematic error 
of 0.013 mV ms [95% CI: 0.008 mV ms to 0.018 mV 
ms].  It is possible to reduce the influence of this already 
small systematic error by subtracting the point estimate of 
this error component (0.013 mV ms) from MSVG values 
that are computed using 40 Hz low-pass filtered VCG 
data.  In addition, the 40 Hz low-pass ECG monitoring 
filter was found to introduce a random error component 
of 0.282 mV ms [95% CI: 0.266 mV ms to 0.298 mV ms] 
to the MSVG values. 
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Modern vectorcardiography typically relies upon 
derived VCGs that are obtained through the utilization of 
linear ECG lead transformations rather then directly 
recorded Frank VCGs. The two lead transformation 
matrices that are commonly used for deriving the Frank 
VCG from the standard 12-lead ECG and the ML 12-lead 
ECG are the Kors [18] and the Guldenring matrix [7] 
respectively.  Previous research has quantified the 
Guldenring matrix related estimation error when 
computing the MSVG from the ML 12-lead ECG as 
(systematic error: -3.00 mV ms; random error: 30.17 mV 
ms) [19]. This lead transformation related estimation 
error is large compared to the influence of the 40 Hz low-
pass ECG monitoring filter on the value of the MSVG. 
From this we conclude that the utilization of 40 Hz low-
pass filtered ECG data is no obstacle for the 
determination of the MSVG in ECG monitoring 
applications. 

 
5. Conclusion 

In this paper we have reported on the effects of a 40 
Hz low-pass ECG monitoring filter on the MSVG.  Our 
findings suggest that linear-phase (or alternatively zero-
phase) ECG monitoring filters with a high-frequency 
cutoff of 40 Hz do only introduce minor changes to the 
value of the MSVG.   

Based on our findings we conclude that it is possible 
to record the MSVG in ECG monitoring applications that 
require the utilization of 40 Hz low-pass filters. 
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