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Abstract

Aims: Physicians have to routinely make crucial de-
cisions about patients’ health in the ICU. Sepsis affects
about 35% of ICU patients, killing approximately 25% of
the afflicted. In this paper, we aim to predict the occur-
rence of sepsis early by studying the missingness of phys-
iological variables and using it with the overall trends in
data.
Methods: We chose XGBoost as our base model and tried
several variations by changing hyperparameters, window
sizes and imputation methods. To further improve the
model, we used masking vectors to represent the missing-
ness of features in the dataset. Additional modifications
include shifting the Sepsis Label to earlier time steps and
tuning the classification probability threshold to further
improve the model’s performance.
Results: The XGBoost model with a sliding window of size
5, no imputation, utilizing informative missingness of all
temporal variables and trained on labels shifted by 3 hours
before toptimal, achieved a Utility Score of 0.337 on the full
test set. We identified as ”CTL-Team” in the challenge and
were officially ranked 5th on the basis of this score.

1. Introduction

Sepsis is a potentially life-threatening organ dysfunction
caused by the body’s extreme response to an infection. A
recent study assessed the global incidence rate of sepsis at
31.5 million cases/year with 19.4 million cases of severe
sepsis and potentially 5.3 million deaths annually [1].

In addition to a high occurrence rate, early detection and
treatment of sepsis is essential for patient survival as each
hour of delay leads to an average decrease in survival of
7.6% [2].

For early identification of highly susceptible patients,
scoring metrics are commonly used which prove useful as
track and trigger monitoring systems of patient health. For
Sepsis monitoring, the SOFA (Sequential Organ Failure
Assessment) score and qSOFA (quick-SOFA) are consid-
ered standards [3, 4].

More recently, the increased availability of healthcare
data has opened new avenues to develop statistical models

for data-driven representations of several illnesses.
The Physionet 2019 Challenge [5] was to encourage de-

velopment of computational algorithms for early predic-
tion of sepsis. The competition proposed a new metric,
called the ”Utility Score” for assessing time-wise predic-
tion accuracy and favoured models which correctly pre-
dicted sepsis onset about 12 hours before a physician
would diagnose the same.

For this purpose, we develop an XGBoost-based model
for early prediction of Sepsis. A naive model does not
prove suitable for the task because of certain characteris-
tics of the dataset. Thus, we empirically prove the exis-
tence and importance of patterns in the missing data (called
informative missingness) and leverage it to develop a more
accurate model.

2. The Dataset

2.1. General Characteristics

The challenge used data comprised of three distinct hos-
pitals in the United States. Data from corresponding hos-
pitals were referred to as sets A,B and C respectively. The
full training dataset provided by the organizers was a sub-
set of data from sets A and B totalling ICU stay records
of 40,336 patients. Data from set C remained hidden and
was used to check generalization performance of models.
Please see [5] for further details of the dataset.

In initial analysis, we noted the significant differences
in ICU Length of Stay (ICULOS) of sepsis and non-sepsis
patients. Almost all patients who were not diagnosed as
having Sepsis, spent less than 60 hours in the ICU (mean
stay of ≈ 37 hours with std of 15.8 hours). On the other
hand, patients with Sepsis spent more time in the ICU
(mean stay of ≈ 60 hours with std of 59.2 hours). This
may be due to increased complications in medical care due
to Sepsis.

Finally, there was also significant class imbalance.
There were just 2932 (7.26%) Sepsis patients and only
27916 (1.8%) records labeled as data corresponding to
Sepsis.
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2.2. Informative Missingness

Several works from the Machine Learning in Healthcare
domain utilize patterns in missing data to make more accu-
rate predictions. At the same time, this serves to alleviate
the sparsity of features in such datasets [6–8]. In [8], Lin
et al. highlight the difference between Missing Completely
at Random (MCAR) and Missing at Random (MAR) data
and empirically prove that when data is not MCAR, includ-
ing patterns of feature missingness (or informative miss-
ingness) is useful for machine learning models.

Inspired by the importance of informative missingness
(IM) presented by the results of these earlier works, we
analyzed our data in three stages to look for variables ex-
hibiting IM.

In the first stage of analysis, we separated the patients
into Sepsis and non-Sepsis classes. Then we computed the
overall observation rates for each variable (except those
with 100% observation) and compared them for the 2
classes. This is illustrated in Fig.1.

In the second stage, we wanted to see the observa-
tion trends of variables identified as relevant (IM vari-
ables) to Sepsis patients. For this purpose we plotted the
hourly probability of observation of such variables for both
classes. This can be seen for two such variables (FiO2 and
Lactate) in Fig.2 - Left. Both variables show persistent dif-
ferences in observation probabilities between classes. Sim-
ilar trends were also observed for other variables.

Finally, since our aim was to maximize the Utility score
metric, we were most interested in a 6-hour time window
around toptimal [5]. Variables which show clear trends in
observation probabilities in this window should help a pre-
dictive model achieve a higher score. This can be seen on
Figure 4 - Right. There is a marked increase in probability
of observing both variables a little after toptimal. Similar
peaks for other IM variables were observed as well, but to
varying extents.

The above analysis was done to assess whether includ-
ing informative missingness would improve Utility score.
Considering persistent differences in hourly observation
probabilities and peaks before tsepsis, we concluded that
missingness patterns of IM variables would be strong early
indicators of Sepsis onset. We will later include this in our
model.

3. Methods

We chose our model to be based on the Extreme Gradi-
ent Boosting (XGBoost) algorithm. Several variants were
trained and compared. For implementation, we chose the
open source library and corresponding optimizations pre-
sented in [9].

Figure 1: Top 12 features showing the largest difference in
observation rates between Sepsis and non-Sepsis Patients.

Figure 2: Left: Overall observation probability for pa-
tients with 20≤ICULOS≤70. Right: Observation Prob-
abilities for all Sepsis patients around toptimal.

3.1. Data Preprocessing

Formally, the dataset is a sequence of records where
each observation is denoted by xt ∈ IRd such that t is
the time of observation and d is the number of features.

Windowing. Since XGBoost is not a sequence learning
model, we made non-overlapping windows of w consec-
utive records and use as a single input. Thus, for an ob-
servation at t, we concatenate records from xt−w+1 to xt

((d ∗w) features) to predict the Sepsis Label at t. For each
new record as input, the window moved by 1 to include
new information (sliding window).

Informative Missingness. As mentioned in [5], there
were 3 types of variables in the dataset. Two of them -
Vitals and Laboratory variables were temporal in nature.
Each observation xt was used as input without any impu-
tation, i.e. missing features were represented as NaNs. To
represent missingness patterns, we used all temporal fea-
tures of each xt to create corresponding masking vectors
mt, similar to [6] and [7] such that; mt

d = 0 if xt
d is not

observed and 1 otherwise.
Additional Features. We found that binning the age de-

mographic variable and encoding it as a one-hot vector led
to slightly improved results. We also decided to use a sim-
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ilar severity scoring metric as described in Section 1. Due
to the absence of the Glasgow Coma Scale variable in the
dataset, SOFA score could not be used. Thus, we resorted
to using the NEWS (National Early Warning Score) pre-
scribed by the Royal College of Physicians (RCP) in the
United Kingdom. [10] suggests that NEWS is more ac-
curate for septic shock and sepsis related mortality pre-
diction, even compared to SOFA and qSOFA scores. The
NEWS was denoted by NaN whenever variables necessary
for its computation were missing in the dataset. It was used
as part of the masking vector in a similar way as the other
variables.

Label Shifting. The Utility Score metric was defined
such that a positive utility score could be achieved by
making a correct sepsis prediction up to 6 hours before
toptimal and about 12 hours before tsepsis. Since we used
a non-sequential model and our window size was relatively
small, we decided to shift the Sepsis Labels further back
to encourage even earlier predictions. That is for Sepsis
patients, SepsisLabel = 1 if t ≥ tsepsis − (6 + k) and Sep-
sisLabel = 0 if t < tsepsis − (6 + k). We experimented
with several values of k and found that k = 3 resulted in
the maximum Utility Score on our local testing set.

Our preprocessing steps are illustrated in Figure 5.

Figure 3: Data Preprocessing for the best model. The
sliding window results in each record being used multiple
times in the input.

3.2. Model Development

Several variants based on XGBoost were created and
tested. Since any kind of imputation (mean, median,
forward-filling) resulted in adverse results, no imputation
was performed. No additional preprocessing was neces-
sary since XGBoost automatically handles sparse inputs.
We also augmented the input to our XGBoost model with a
masking vector similar to [11]. The model was then trained
on the shifted labels. The feature importances of the best
model are summarized in Table 1.

Feature Gain
Lactate indicator at t 4124.448

FiO2 indicator at t− 1 3729.544
Lactate indicator at t− 1 3352.092

FiO2 indicator at t 3307.474
FiO2 at t− 2 2930.259

Table 1: 4 of the 5 most important features of the Best
Model were indicator variables.

4. Results

Before model development, 20% of the training data
was randomly selected (patient-wise) and kept aside for
testing (8068 patients). Hyperparameters were tuned using
k-fold stratified cross validation on the remaining training
data. Performance of different XGBoost variants on the lo-
cal testing set are summarized in Table 2. All models use
a windowed input of size 5 as a default. The naive model
simply used a windowed input and is called ”XGBoost-
W”. All others are modifications of this model. As is evi-
dent from the results, mean imputation results in the worst
performing model. This is probably due to important in-
formation being lost as a consequence of imputing missing
values and bias introduced to data. A modification with no
imputation and using masking vectors made from labora-
tory variables only was tried and it exceeded the baseline
model (Sparse IM). Following this, a larger masking vec-
tor, using all temporal variables was created, which further
improved the Utility score (All IM). Preprocessing steps
described in Section 3.1 brought about additional improve-
ments. This ”Best Model” achieved a mean AUROC score
of 0.8406 and mean Utility of 0.404 on 5-fold stratified
cross-validated data. The same were 0.8377 and 0.4402 on
the local testing set. It also achieved the highest score on
hidden set A with 0.401 Utility. For final rankings, the best
model was run on other hidden sets; the results for which
are summarized in Table 3.

Table 2: Comparison of several models.

Model AUROC Utility Score
XGBoost-W 0.8305 0.4074
+ Mean Imputation 0.8198 0.3969
+ No Imputation + Sparse IM 0.8328 0.4205
+ No Imputation + All IM 0.8318 0.4225
+ Best Model 0.8377 0.4402

5. Discussion

We performed some analysis to check the validity of our
assumptions pertaining to the usefulness of IM in predic-
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Table 3: CTL-Team’s Best Model performance on differ-
ent testing sets.

Dataset AUROC Utility Score
Test Set A 0.806 0.401
Test Set B 0.846 0.407
Test Set C 0.805 -0.094
Full Test Set N/A 0.337

tive models. Since adding IM features led to higher AU-
ROC and Utility scores, we assumed these models would
have higher probabilities of predicting True Positives in the
tearly to tsepsis range with possibly earlier peaks. Trends
in Figure 4 showed that this assumption was wrong. The
reason these models performed better was a much lower
number of False Positives in their predictions. Figure 5
shows prediction results on an overall basis (predicting at
least one Sepsis record for a Sepsis patient). A similar
trend of decreasing False Positives with IM addition was
seen for record-wise predictions as well.

Figure 4: Sepsis prediction probabilities for various mod-
els around toptimal.

Figure 5: Patient-wise prediction comparison for various
models.
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