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Abstract

Statistical estimation techniques with “good” prior in-
formation improves the accuracy of electrocardiographic
imaging (ECGI). Obtaining a “good” prior information
in terms of training data, and how to use these data to
estimate the prior parameters, are among of the primary
challenges in statistical ECGI literature. This study inves-
tigates the effects of training set compositions, and prior
parameter estimation methods on the ECGI accuracy. Two
different training sets were used to determine the prior sta-
tistical parameters: 1) Beats that are all paced close to the
test beat pacing site, 2) Beats with pacing sites covering a
wider region around the test beat pacing site. These two
training sets are obtained from a database of previously
recorded epicardial potentials and used in maximum likeli-
hood (ML)- and maximum a posteriori (MAP)-based prior
estimation methods. The inverse problem is then solved by
using the Kalman filter, based on those priors. Our results
show that the Tikhonov regularization is the most frag-
ile method to the measurement noise. MAPIF method is
more robust to measurement noise in terms of electrogram
reconstruction and activation time estimation accuracies,
for both training sets. MLIF performed better with a more
spread training set in terms of electrogram reconstruction
accuracy, but showed better activation time reconstruction
performance with the first training set.

1. Introduction

In ECGI, one can enhance the accuracy of inverse solu-
tions by including precise prior information. For example,
Serinagaoglu et al. [1] investigated the effects of prior in-
formation on the solution. They improved the accuracy of
solutions by including epicardial potential measurements
which were taken directly from the subject’s heart in ad-
dition to epicardial potentials which were taken from a
database. Furthermore, in deterministic methods’ context,
Gutierrez et al. [2] also studied the importance of prior
information and developed a new method which modifies
zero order Tikhonov regularization by taking into account

the measurements near endocardium region. Generally, in-
cluding a priori information yields more accurate solutions
in these two studies. Recently, in [3], we presented a study
on ECGI by using ML and MAP estimation methods. In
that study, the training sets were selected by following a
more general manner, meaning that no systematic way was
followed to choose the training sets. To understand the ef-
fects of prior information on ML and MAP methods more
profoundly, in this study, we follow a systematic approach
to choose the training sets and investigate the impacts of
these prior information on the solution.

2. State-Space Formulation of the Prob-
lem

Here, the epicardial potentials are used as cardiac
sources. Hence, the problem can be formulated in a lin-
ear state-space form as follows:

yk = Axk + vk, (1)
xk+1 = Fxk + wk, (2)

where xk ∈ RN and yk ∈ RM denote the epicardial and
the body surface potential vectors at time k, respectively;
vk ∈ RM ∼ N (vk;0,R) and wk ∈ RN ∼ N (wk;0,Q)
correspond to measurement and process noises, respec-
tively; F is the N ×N state transition matrix and A is the
M ×N forward transfer matrix. Furthermore, the process
and measurement noises are assumed to be uncorrelated
with the state xk.

3. Kalman Filtering and Smoothing

Kalman filter is an optimal estimator used for recon-
structing the unobserved states of a system by using the
observed data. There are two stages in the Kalman filter.
In the first stage, the predicted state vector xk|k−1 and the
state covariance are estimated as:

xk|k−1 = Fxk−1|k−1, (3)

Pk|k−1 = FPk−1|k−1F
T + Q. (4)
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Second stage is about updating the predictions xk|k−1 and
Pk|k−1 by using the measurement vector yk to estimate
the state vector, xk|k, and the state covariance matrix, Pk|k
as follows:

Kk = Pk|k−1A
T (APk|k−1A

T + R)−1, (5)
xk|k = xk|k−1 + Kk(yk −Axk|k−1), (6)
Pk|k = (I−KkA)Pk|k−1, (7)

where Kk is the Kalman gain. In order to initialize the
Kalman filter at the first time instant and run the filter re-
cursively, the mean vector x̄1 = x0|0 and covariance ma-
trix Σ1 = P0|0, must be found. Furthermore, the state
transition matrix F, and the error covariances R and Q
also must be specified.

After the Kalman filter results are found, Rauch-Tung-
Striebel Smoother (RTS) [4] is used to perform a second
set of recursions from the last time instant down to the first
time instant according to the following equations:

Pk+1|k = FPk|kFT + Q, (8)

Gk = Pk|kFT (Pk+1|k)
−1, (9)

xs
k|T = xk|k + Gk[xk+1|T − Fxk|k], (10)

Ps
k|T = Pk|k + Gk(P

s
k+1|T −Pk+1|k)G

T
k .(11)

The inverse solution at the kth time instant for the Kalman
filter and smoother are xk|k and xs

k|T , respectively.

4. Maximum Likelihood and Maximum a
Posteriori Parameter Estimation

This study utilizes ML and MAP techniques to
estimate the unknown model parameter set Θ =
{x̄1,Σ1,F,Q,R}. This parameter set is essential to use
the Kalman filter. A database which consists of measured
epicardial potentials Xtr = {x`

1:T }`=1:L and correspond-
ing simulated body surface potentials Ytr = {y`

1:T }`=1:L

is used by ML- and MAP-based parameter estimation al-
gorithms in this study.
Maximum likelihood estimation: This method estimates
the parameter Θ by maximizing the log likelihood func-
tion:

Θ̂ = arg max
Θ

ln p(Xtr,Ytr | Θ)︸ ︷︷ ︸
L(Θ)

. (12)

Under the assumption that experiments in the training set
are independent and have Markov property [5, 6], the log
likelihood function can be written as follows:

lnL(Θ) =

L∑
`=1

ln p(x`
1|x̄1, Σ̄1) +

L∑
`=1

T∑
k=1

ln p(y`
k|x`

k,R)

+

L∑
`=1

T∑
k=2

ln p(x`
k|x`

k−1,F,Q), (13)

where

p(x`
1|x̄1,Σ1) ∼ N (x`

1; x̄1,Σ1), (14)
p(y`

k|x`
k,R) ∼ N (y`

k;Ax`
k,R), (15)

p(x`
k|x`

k−1,F,Q) ∼ N (x
`
k;Fx`

k−1,Q). (16)

The parameter Θ is estimated by taking the derivative of
equation 13 with respect to each parameter and equate the
derivatives to zero. The resulting estimated parameters are
summarized in Table 1.

Table 1. ML based parameter estimation

Estimated parameters:

ˆ̄x1 = 1
L

∑L
`=1 x`

1,

Σ̂1 = 1
L

∑L
`=1 (x

`
1 − ˆ̄x1)(x

`
1 − ˆ̄x1)

T ,

R̂ = 1
LT

∑L
`=1

∑T
k=1(y

`
k −Ax`

k)(y
`
k −Ax`

k)
T ,

F̂ =

[∑L
`=1

∑T
k=2 x`

k(x
`
k−1)

T

]

·

[∑L
`=1

∑T
k=2 x`

k−1(x
`
k−1)

T

]−1
,

Q̂ = 1
L(T−1)

∑L
`=1

∑T
k=2(x

`
k − F̂x

`

k−1)(x
`
k − F̂x

`

k−1)
T .

Maximum a posteriori estimation: ML estimation is
known to suffer from an over-fitting issue due to its nature
[7][8]. As a consequence, this may cause major perfor-
mance degradation. In that case, MAP estimation can be
used as an alternative to ML estimation. In MAP estima-
tion, the log posterior pdf is maximized as follows:

Θ̂ = arg max
Θ

[ln p(Xtr,Ytr | Θ) + lnp(Θ)].(17)

Using Ozbek et al.’s approach [5], we divide the parame-
ter set into two subsets such that Θ = {Θ1,Θ2} where
Θ1 = {x̄1,Σ1,R} and Θ2 = {F,Q}. Θ1 and Θ2

are assumed to be independent, and p(Θ1) is taken as a
non-informative prior. Since the parameter Θ1 is non-
informative prior, the estimated values of this parameter
set elements are the same as those obtained in the ML es-
timation. To estimate the parameter Θ2, p(F | Q) is as-
sumed to be a zero mean normal distribution, and p(Q) is
the inverse Wishart distribution. By plugging in the neces-
sary parameters into equation 17 and taking the derivative
of it with respect to F and Q, the estimated parameters
are found and summarized in Table 2. Further mathemat-
ical details of ML and MAP estimation techniques can be
found in our previous works [3][9].
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Table 2. MAP based parameter estimation

Estimated parameters:

F̂ =
[∑L

`=1

∑T
k=2 x`

k(x
`
k−1)

T
]

·
[∑L

`=1

∑T
k=2

(
x`
k−1(x

`
k−1)

T
)
+ Φ−1

]−1
,

Q̂ =

L∑
`=1

T∑
k=2

(x`
k − F̂x

`
k−1)(x

`
k − F̂x

`
k−1)

T +
(
F̂T Φ−1F̂ + ΨT

)
L(T − 1) + (v + 2M + 1)

,

where v = L(T − 1); Ψ, Φ and α are chosen as:

α = 0.1,

Ψ = I/v,

Φ−1 = α
∑L

`=1

∑T
k=2 x̃`

k−1(x̃
`
k−1)

T .

5. Results and Conclusion

Three different solution methods are implemented in
this study as follows:
• Tikhonov regularization (TIKH): Zero-order Tikhonov
regularization is applied to the problem [10].
• Maximum likelihood inference and filtering (MLIF):
Kalman filter and smoother is applied to solve the prob-
lem. The parameters that are essential to initialize and run
the Kalman filter are found by using ML estimation.
• Maximum a posteriori inference and filtering (MAPIF):
In this method, again, Kalman filter and smoother is ap-
plied. However, this time, the parameters that are essential
for the Kalman filter are found by using MAP estimation.

We compose two different training sets consisting of
recordings from a different experiment to understand the
effect of prior information on the inverse solutions:
• Training Set 1 (Scenario 1): This set consists of epicar-
dial potentials which are in the range of 20 mm. of the test
beat’s initial stimulation point, at most. The methods that
use training set 1 for parameter estimation are labeled as
MLIF-1 and MAPIF-1.
• Training Set 2 (Scenario 2): This set consists of epicar-
dial potentials which are in the range of 40 mm. of the test
beat’s initial stimulation point, at most. The methods that
use training set 2 for parameter estimation are labeled as
MLIF-2 and MAPIF-2.
In this study, University of Utah’s epicardial potential
database was used. Body surface potentials were calcu-
lated by simulation, i.e., the epicardial potentials were
multiplied by the forward transfer matrix, which was found
by using boundary element method, and a proper noise (10
dB or 30 dB SNR) was added to the result. For all the
scenarios, 100 Monte Carlo runs were used to obtain the

results. The average of all these 100 simulations was taken
in each case.
Quantitative evaluation of electrograms: In Fig. 1 and
2, we present the box plots for the CC when the body
surface potentials are simulated at 10 and 30 dB SNR,
respectively. The results show that for both SNR cases,
MLIF-2 (mean CC of 0.75 and 0.77, for 10 and 30 dB
SNR cases, respectively) outperforms MLIF-1 (mean CC
of 0.73 and 0.75, for 10 and 30 dB SNR cases, respec-
tively). As per these results, we can conclude that using
a more general training set with pacing sites spreading to
larger area yields better results in the ML-based method.
On the other hand, MAPIF-1 and MAPIF-2 show almost
the same performances, MAPIF-1 gives mean CC of 0.77
and 0.81; MAPIF-2 gives mean CC of 0.76 and 0.81 for
10 and 30 dB SNR cases, respectively. Tikhonov regular-
ization is the most vulnerable method to the measurement
noise and its mean CC value drops by 16% as SNR de-
creases from 30 to 10 dB.

Figure 1. Box plots for the CC values; BSPs are simulated
at 10 dB SNR

Figure 2. Box plots for the CC values; BSPs are simulated
at 30 dB SNR

Evaluation of activation times and localization error:
In this section, the performances of the proposed meth-
ods are investigated in terms of activation times and local-
ization errors. Tables 3 and 4 show the CC values of the
activation times and localization errors, respectively. As
seen in Table 3, in general, the methods that use training
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set 1 give higher CC values in terms of activation times.
MAPIF-1 is the most robust method to the measurement
noise and its CC value drops approximately by 3%. In
terms of localization errors, Tikhonov regularization is the
most fragile method to the measurement noise and its lo-
calization error increases from 5.06 mm to 38.58 mm when
the measurement noise is changed 30 dB to 10 dB SNR.
In 10 dB SNR case, MLIF, which provides a localization
error of 4.75 mm at most, outperforms MAPIF, which pro-
vides 9.48 mm at most. On the other hand, in 30 dB SNR
case, MAPIF-1 outperforms the other methods and finds
the origin of the beat within a range of 4.75 mm.

Table 3. CC values for ATs for all methods; BSPs are
simulated at 30 and 10 dB SNR

Method 10 dB 30 dB
Tikhonov 0.78 0.81
MLIF-1 0.82 0.93
MLIF-2 0.77 0.82
MAPIF-1 0.89 0.92
MAPIF-2 0.75 0.85

Table 4. Localization errors (in mm) for all methods;
BSPs are simulated at 30 and 10 dB SNR

Method 10 dB 30 dB
Tikhonov 38.58 5.06
MLIF-1 4.75 5.89
MLIF-2 0 5.89
MAPIF-1 9.48 4.75
MAPIF-2 9.48 14.47

6. Discussions and Future Works

In this study, the prior information effects on the so-
lution of inverse electrocardiography was studied. Since
ML-based methods have over-fitting issue due to their na-
ture, MAPIF yielded more accurate solutions as compared
to MLIF. Furthermore, we observed that using a training
set which covers a wider region in terms of the pacing loca-
tions, i.e training set 2, slightly improved the electrogram
reconstructions. Increasing the diversity of epicardial dis-
tributions in the training process made a positive impact on
the results and provided more regularized and smoother so-
lutions. On the other hand, training sets which were com-
posed by choosing the beats that have pacing sites close to
the test beat’s pacing location, i.e training set 1, were more
successful in finding activation times and yielded less lo-
calization errors. This was an expected result because the
closer beats have more similar distributions to the test beat
in the early times, increasing the accuracy of the recon-
structions early in the activation.
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Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz, Electrical and
Electronics Engineering Department, Middle East Technical University,
yserin@metu.edu.tr

Page 4


