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Abstract

Bipolar ECG leads recorded from closely spaced elec-
trodes are challenging in any context. When they are po-
sitioned distally with respect to the source field (far-field),
the recovery of clinically useful signal content represents
an even greater challenge. Due to the increased interest in
ambulatory wellness devices, particularly wrist-worn de-
vices, there is a renewed interest in recovering ECG sig-
nals from distally located bipolar leads.
In this study 10 bipolar leads were simultaneously
recorded at various locations along the left arm. At the
same time, a conventional proximal reading on the chest
using Lead I was also recorded and stored. This process
was repeated for 11 healthy subjects. ECGs were recorded
for a period of approximately 6 minutes for each subject
and sampled at a frequency of 2048 Hz. Wavelet-based fil-
tering using Daubechies 4 wavelet decomposition and soft
threshold was applied to each lead. QRS detection perfor-
mance was assessed against Lead I for each subject.
This investigation found that a lead positioned transver-
sally (using BIS gelled electrodes) on the upper arm pro-
vided the best accuracy against the benchmark QRS de-
tection (SEN = 0.998, PPV = 0.984). The most distally
positioned bipolar lead using dry electrodes faired least
favourable (SEN = 0.272, PPV = 0.202).

1. Introduction

In recent years there has been a move from stationary to
portable ECG devices i.e. wearable ECGs. With portabil-
ity comes increased mobility and movement, in terms of
accuracy this creates more unwanted noise [1]. To max-
imise ECG signal quality, electrodes are positioned either
on standardised locations along the chest wall or on both
arms. This however becomes problematic when consider-
ing long term monitoring for multiple reasons;
1. Standard daily activity which restricts free motion.

2. Electrode adhesion, which causes irritation to the skin
after only a short time attached [2].

Therefore, electrodes are ideally positioned in a more
convenient and comfortable location e.g. wrist-worn. This
however results in an almost undetectable ECG signal due
to electrode spacing and smaller cardiac signal in distant
locations caused by muscle artefact [3]. Much research
has gone into the exploration and development of wear-
able ECG monitors, with portable and wireless devices be-
ing one of the most in-demand and desirable bio-medical
measurement technologies [4]. As electronic equipment
is becoming smaller, the size of monitoring devices can
also be reduced [5]. Furthermore, the necessity to cre-
ate functional wearable ECG devices with a reduced inter-
electrode distance has increased [6]. However, reduction
of the inter-electrode distance essentially causes the signal
strength to reduce [7]. Consequently, the main challenge
of this investigation is the ability to develop a filtering tech-
nique to effectively denoise the poor signals produced from
different regions along the arm. Wearable Health Devices
(WHDs), mainly wrist-worn monitors, have become a phe-
nomenon [5]. Currently, technology exists for measur-
ing heart rate in the form of optical photoplethysmogram
(PPG). However, this technology cannot accurately detect
heart rhythm [8]. Some emerging devices are providing
ECG based functionality; however, these devices rely on
the user touching the device on their wrist with their other
hand in order to establish a bipolar lead. A bipolar lead
measured from a single device on one wrist still remains
elusive [9]. This study aims to provide a comprehensive
method for the recovery of ECG information located in far
field sites.

2. Methods

In this study, several bipolar leads at various positions
along the left arm have been recorded to assess their preva-
lence over the background noise. The background noise
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has been removed using noise filtering techniques in order
to detect the QRS complex of each lead along the left arm.

2.1. Data Acquisition

In this study, data was gathered from Craigavon Area
Hospital (CAH), Northern Ireland in association with
WASTCArD project. Arm ECGs of 11 subjects were
recorded in a resting position for a period of 5 to 6 minutes,
using 10 bipolar leads. Recordings were completed on var-
ious days utilizing the same equipment and room condi-
tions. A combination of dry and special pre-gelled BIS
QuatroTM electrodes were positioned axially and transver-
sally along the left arm as depicted in Table 1 and Figure 1
[10].

Leads Channels Location
DRY ELECTRODE LEADS

Lead 1 Ch13-Ch14 Upper Arm
Lead 2 Ch11-Ch12 Wrist
Lead 3 Ch13-Ch12 Wrist-Upper Arm

TRANSVERSAL BIS GEL ELECTRODE LEADS

Lead 4 Ch10-Ch8 Upper Arm
Lead 5 Ch7-Ch5 Lower Arm
Lead 6 Ch4-Ch3 Wrist

AXIAL BIS GEL ELECTRODE LEADS

Lead 7 Ch10-Ch6 Upper Arm-Forearm
Lead 8 Ch7-Ch2 Forearm-Wrist
Lead 9 Ch10-Ch2 Upper Arm-Wrist
Lead 10 Ch1-Ch3 Lower Arm - Right Arm

REFERENCE LEAD

Lead I Ch16-Ch17 Left Arm-Right Arm

Table 1. Lead Numbers and Anatomical Locations of
Studied Left-Arm ECG Bipolar Leads.

MATLAB R2018b (The Mathworks Ins., Natick, MA,
USA) was used as the signal processing tool for the ECG
WASTCArD data provided [11]. All subjects signed a con-
sent form in agreement with the study. Ethical approval
was obtained from HSC REC B (Health and Social Care,
Research Ethical Committee, Reference: 16/NI/0158), and
IRAS (Integrated Research Application System, Regis-
tered Project ID: 203125, Dated: 21/September/2016).

2.2. Pre-processing

Firstly, each lead was extracted from the acquisition
channels as described in Table 1. Then the DC component
of each lead was removed by subtracting the mean value
of the ECG signal using Equation 1.

ECGDCR = ECGinput −mean(ECGinput) (1)

where ECGDCR represents the output signal with the DC

Figure 1. Anatomical locations of leads along the left arm
using the BIS-QuatroTM sensor strips and dry electrodes.

component removed and ECGinput represents the origi-
nal ECG signal.

A notch filter set to 50 Hz was used to remove the
power-line interference. This is most commonly experi-
enced due to the simple problem of disconnected elec-
trodes and therefore requires immediate re-connection.
Otherwise, this signal interference would result in poor
quality tracing. Furthermore, a second order high pass
Butterworth filter at 0.5 Hz was used to limit noise due
to respiratory artefact. Also, a second order low pass But-
terworth filter at 40 Hz was used to limit the bandwidth of
the signal and attenuate out band noise and the power-line
interference [2].

2.3. DWT-based denoising algorithm

Discrete Wavelet Transforms (DWT) have been demon-
strated as a powerful tool for ECG signal analysis [12]. It
not only localizes the information of signals in the time-
frequency domain, but is also capable of trading one type
of resolution for the other, which makes it especially suit-
able for the analysis of non-stationary signals such as ECG
signals [13].

For this reason, wavelet-based methods of denoising are
becoming more advantageous signal analysis techniques
offering flexibility and adaptability to overcome limita-
tions associated with standard filtering techniques [14].
Furthermore, this method can be useful when resolving is-
sues such as power-line interference and internal muscle
movement.

For this study, ECG signals were denoised using a 4th-
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level wavelet decomposition with db4 Daubechies wavelet
as the mother wavelet. The 4th-order wavelet was selected
over the 6th-order wavelet due to its similarity with the
QRS complex [15]. The signal is broken down into 4 levels
of approximated coefficients and detailed coefficients, as
presented in Figure 2.

Figure 2. An example of a 3rd level Wavelet Decomposi-
tion [16]

The approximate coefficients (H) represent the low fre-
quency components obtained using low pass filters and the
detailed coefficients (G) represent the high frequency com-
ponents obtained using high pass filters. From these coef-
ficients, a soft threshold was applied to modify the signal
where every coefficient higher than the threshold value is
decreased by the size of the threshold. The remaining co-
efficients that are lower than the threshold are then set to
zero. The threshold λ can be determined using the follow-
ing equation:

λ = σ logN (2)

where the standard deviation is represented by σ and the
length of the signal is represented by N .

2.4. Performance Assessment

Given the absence of a gold standard waveform at the
sites. Where the bipolar leads were recorded, it is not pos-
sible to compare the recorded waveform to an actual sig-
nal. Therefore, performance assessment was made based
on the ability to accurately detect QRS complexes on the
ECG signals recorded from each of the distally recorded
ECG lead. This approach was adopted as any ambulatory
system is likely to rely on accurate QRS detection, and
subsequent R-wave location. To establish basic measure-
ments (rate and rhythm). In the conduct of this research, a
computer algorithm was used to detect QRS complexes on
each of the recorded signals. This algorithm is based on
the Pan and Tompkins approach [17], which has been opti-
mised for wearable/ambulatory applications. Annotations
obtained using the algorithm from the proximally recorded
Lead I were used as the reference annotations. Annotations

from each lead, again obtained using the computer algo-
rithm, were compared to the reference annotations from
Lead I. Comparison of reference and test annotations were
based on the ANSI/AAMI-standard beat-by-beat annota-
tion comparator reference implementation that is available
in the PhysioNet WaveForm DataBase (WFDB) Toolbox
[1]. The performance evaluation was configured consid-
ering all annotations, from the beginning of each record.
Reference and test annotations were considered equiva-
lent when they fell within the reference implementations
default 150 ms window. Performance was expressed as
percentage of sensitivity, the ratio of correct detections to
the actual number of beats, and positive predictive value
(PPV), the ratio of correct detections to the total number
of beats detected:

Se =
TP

TP + FN
.100% (3)

PPV =
TP

TP + FP
.100% (4)

where True Positives (TP) represents the peaks that have
been correctly identified, False Positive (FP) is equal to
a point that has been incorrectly identified as a peak, and
False Positive (FN) represents any peak that has not been
identified [10].

3. Results and Discussion

Signal noise appears to be more evident when the dry
electrodes are used. This is likely due to the interaction
between the subjects’ skin and the electrode, which in turn
creates a rubbing effect [2]. Lead 2, a dry electrode located
on the wrist, performed with a median sensitivity of only
0.292 and PPV of 0.191 as presented in Table 2.

LEADS SENS(MED) PPV(MED) SENS(MEAN) PPV(MEAN)

1 0.726 0.667 0.537 0.544
2 0.292 0.191 0.272 0.202
3 0.814 0.493 0.627 0.535
4 1 0.994 0.998 0.984
5 0.494 0.234 0.382 0.217
6 0.411 0.219 0.373 0.219
7 0.983 0.975 0.845 0.787
8 0.452 0.2 0.315 0.174
9 0.93 0.683 0.828 0.646
10 0.88 0.227 0.388 0.218
I 1 1 1 1

Table 2. Sensitivity and PPV of the Mean and Median for
all the subjects.

As for Lead 6, a conductive gel electrode that is also
located on the wrist, the median sensitivity achieved was
sufficiently larger than that of Lead 2 at 0.411. Overall, the
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best performing lead was Lead 4 located on the upper arm,
with a median sensitivity of 1 and PPV of 0.994, which
was used with a conducting gel electrode. Lead 1, also lo-
cated on the upper arm, achieved weaker results as seen
in Table 2. This provides further evidence that the intro-
duction of gel electrodes seems to alleviate the issue of the
rubbing effect created by dry electrode and consequently
giving better results for the detection of the QRS complex.
Better QRS detection may also be affected by electrode
spacing. In the results gathered, the shortest spaced leads
i.e Lead 2 and Lead 6 has the lowest sensitivity and PPV
values, whereas leads 1 and 4, with greater electrode spac-
ing, performed the best.

4. Conclusion

The use of DWT for ECG information recovery in far
field sites were investigated in this study. These findings
determined that a reasonable level of QRS detection ac-
curacy can be achieved from electrode positioned on the
upper arm with greater electrode spacing. Overall, opti-
mum results were obtained from conductive gel electrodes.
Whilst the quality of the ECG signals may not be adequate
for comprehensive clinical interpretation this level of ac-
curate QRS detection may still be useful in applications
such as heart rate variability analysis. However, due to the
fact that the study was carried out with only 11 subjects, a
more substantial database needs to be collected for further
investigation.

Acknowledgments

This ongoing research is supported by funding by
the Connected Health Innovation Centre (CHIC) and the
European Union (EU): H2020-MSCA-RISE Programme
(WASTCArD Project, Grant #645759).

References

[1] Silva I, Moody GB. An open-source toolbox for analysing
and processing physionet databases in matlab and octave.
Journal of Open Research Software 2014;2(1).

[2] Escalona O, Lynn W, Perpiñan G, McFrederick L, McE-
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