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Abstract

This paper proposes a methodology to extract both lin-

ear and nonlinear respiratory influences from the heart

rate variability (HRV), by decomposing the HRV into a

respiratory and a residual component. This methodology

is based on least-squares support vector machines (LS-

SVM) formulated for nonlinear function estimation. From

this decomposition, a better estimation of the respiratory

sinus arrhythmia (RSA) and the sympathovagal balance

(SB) can be achieved. These estimates are first analyzed

during autonomic blockade and an orthostatic maneuver,

and then compared against the classical HRV and a model

that considers only linear interactions. Results are evalu-

ated using surrogate data analysis and they indicate that

the classical HRV and the linear model underestimate the

cardiorespiratory interactions. Moreover, the linear and

nonlinear interactions appear to be mediated by different

control mechanisms. These findings will allow to better

assess the ANS and to improve the understanding of the

interactions within the cardiorespiratory system.

1. Introduction

It is well-known that the classical heart rate variability

(HRV) analysis might lead to the wrong assessment of the

autonomic nervous system (ANS) when the respiratory in-

fluences are not taken into account [1, 2]. These, possibly

nonlinear, respiratory influences, or so-called respiratory
sinus arrhythmia (RSA), are mediated by the parasympa-

thetic branch of the ANS [3], and are often quantified using

the power of the HRV in the classical high frequency band

(HF: 0.15 Hz to 0.4 Hz). This is based on the assumption

that the spectrum of the HRV can be divided into the low

frequency band (LF: 0.04 Hz to 0.15 Hz), which quan-
tifies both sympathetic and parasympathetic activity, and

the HF band, which mainly reflects the modulation of the

parasympathetic branch of the ANS. Despite the popular-

ity of this spectral division, multiple studies have shown

that the estimation of both the RSA and of the balance

between both ANS branches (or so-called sympathovagal

balance, SB=LF/HF) is inadequate in cases when the res-

piratory rate falls outside the HF band [1, 2].

Different approaches have been proposed to better es-
timate the RSA under different conditions such as stress,

autonomic blockade, tilt-table test, among others. These

approaches, however, either rely on a linear model (e.g.,

[2]), hence only considering linear effects of respiration

on heart rate, or they are able to quantify up to second or-

der interactions (e.g., [4]), by detecting and quantifying the
quadratic phase coupling. In this context, this work aims

at improving the quantification of cardiorespiratory inter-

actions, taking into account both linear and (all) nonlinear

effects. An approach based on least-squares support vector

machines (LS-SVM) [5] will be proposed to decompose

the heart rate into a respiratory component and a residual

component. Moreover, the separation of linear and pure
nonlinear cardiorespiratory interactions will be made.

2. Methodology

2.1. Data

The dataset used in this study was acquired at the Mas-

sachusetts Institute of Technology and it consists of ECG

and respiratory effort signals recorded from 13 male vol-

unteers (ages 19-38 years, 21±4.4 years) with no history

of cardiopulmonary disease. The experimental protocol,

described in [6], includes an orthostatic maneuver and sin-

gle pharmacological blockade of the sympathetic and the
parasympathetic branches of the ANS. A control phase

was initially recorded, where subjects were first in a supine

position (SUC) and the signals were recorded for 7 min-

utes. Then, subjects were moved to a standing position

(STC) and after 5 minutes of adaptation, the signals were

again recorded for 7 more minutes. This procedure was re-
peated 10 minutes after administering either atropine (0.03

mg/kg) or propranolol (0.2 mg/kg) for complete vagal or

sympathetic blockade, respectively. These new phases will

be referred as SUA and STA for atropine and SUP and STP

for propranolol. In total, 4 segments of 7 minutes were an-
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alyzed per subject, 2 control segments and 2 with single

blockade. 7 subjects received atropine and 6 propranolol.

During the entire protocol, subjects were asked to follow
an irregular breathing cycle, where they were allowed to

vary the depth and shape of each breath so that normal ven-

tilation was guaranteed. As a result, the power spectrum of

the respiratory drive was nearly flat [6].

2.2. Pre-processing

The ECG signals were used to find the location of the

R-peaks, which were then corrected for ectopic, missed,

and false peaks using the integral pulse frequency mod-

ulation (IPFM) model [7]. After that, the resulting HRV
signals were resampled at 4 Hz and band-pass filtered us-

ing a Butterworth band-pass filter with cutoff frequencies

of 0.03 Hz and 0.9 Hz. The same filter was applied to the

respiratory signals, which were then downsampled at 4 Hz

and normalized with zero mean and unit variance.

2.3. Quantification of Cardiorespiratory

Interactions

The cardiorespiratory interactions were quantified using
two different approaches. On the one hand, the linear in-

teractions were extracted using orthogonal subspace pro-

jections as described in [2]. In this approach, the heart rate

signal defined as y = [y(1), . . . , y(N)]T , is decomposed

into a respiratory component yx and a residual component

y⊥, with x = [x(1), . . . , x(N)]T the respiratory signal, N
the length of the signals, and x(n), y(n) ∈ R.

The combined linear and nonlinear interactions, on the
other hand, were quantified using kernel regression for

nonlinear function estimation. Here, a novel approach

based on LS-SVM [5] is proposed to perform the heart rate

decomposition. The problem of nonlinear function estima-

tion can be formulated as yx(i) = wT
ϕ(x(i)) + b, with

x(i) ∈ R
m, x(i) = [x(i), x(i− 1), . . . , x(i−m)]T , m the

model order, ϕ(·) : Rm → R
mh the (possibly nonlinear)

mapping to a high dimensional feature space of dimension

mh, w ∈ R
mh , and b ∈ R the bias term. This problem can

then be formulated in the framework of LS-SVM as

min
w,b,e

JP (w, e) =
1

2
wTw+ γ

1

2

N
∑

i=1

e(i)2 (1)

s.t. yx(i) = wT
ϕ(x(i)) + b+ e(i),

with γ a positive regularization constant and e(i) the er-

ror terms that are assumed to be i.i.d. with zero mean and

constant variance. After formulating the Lagrangian L of

(1) and satisfying the conditions for optimality given by
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the dual problem becomes

[
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1N Ω+ I/γ

] [

b

α

]

=

[

0

yx

]

, (3)

where α = [α1, . . . , αN ]T are the Lagrange multipli-

ers, 1N = [1, . . . , 1]T , I the identity matrix, and Ω the
kernel matrix with entries Ωij = ϕ(x(i))Tϕ(x(j)) =
K(x(i),x(j)) = exp(−‖x(i) − x(j)‖22/σ

2), i, j =
1, . . . , N , and σ2 the kernel bandwidth selected using

cross-validation. The resulting LS-SVM model defined as

yx = Ωα + b, with b = [b, . . . , b]T , allows to extract

all possible linear and nonlinear influences of x on y, i.e.,

the respiratory component. The residual component is then
obtained as y⊥ = y − yx.

After decomposing the heart rate, either by means of the

linear or the nonlinear approach, the relative power of the

respiratory component (Px) as an estimate of the RSA and

the unconstrained estimation of the sympathovagal balance
(SBu) are computed as proposed in [2]:

Px =
y′
x
yx

y′y
, SBu =

LF⊥

LFx + HFx

, (4)

with LFx and HFx the powers in the LF and extended HF

(HF: 0.15 Hz - half the mean heart rate) bands of yx. LF⊥

corresponds to the LF power of the residual component.

For both approaches, linear and kernel-based, the model

order m was defined as the maximum value obtained using

the minimum description length principle and the Akaike

Information Criterion. The reason to use the more complex

model relies on the fact that the PSD of the respiratory

drive was nearly flat [6].

In order to differentiate between the pure linear method-

ology and the kernel-based one, the superscripts l and k
will be used. For instance, the respiratory related com-

ponents derived with the linear and the kernel method

will be denoted as yl
x

and yk
x

, respectively. Finally, the

pure nonlinear effects on the RSA will be estimated as
ynl
x

= yk
x
− yl

x
.

2.4. Statistical Analysis

Two different analyses will be performed. First, the sig-

nificance of the kernel-based estimations will be assessed

by means of iteratively refined surrogates for multivariate
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data as described in [8]. The main idea is to generate a

surrogate time series for both the heart rate and respiratory

signal of each phase (e.g., SUC). The pair of surrogates
will be generated in such a way that all the nonlinear in-

teractions will be destroyed. This will be guaranteed by

randomising the data so that their phase information is de-

stroyed. At the same time the individual distributions will

be matched and the autocorrelation function of each sig-

nal as well as the cross-correlation function between the
pairs will be kept. This will be performed 19 times (see

[8]) for each pair of signals. Then, for each set of surro-

gates both Pk
x

and SBk
u will be computed and if they are

larger than the values calculated from the surrogates, the

parameters will be considered to be significant and nonlin-

ear interactions can be assumed to be present in the data.

Instead, when this condition is not satisfied, the interac-
tions are considered to be purely linear.

The second analysis will deal with the ability of the pro-

posed parameters, namely, linear, kernel-based, and pure

nonlinear, to quantify the RSA and the SB under complete

parasympathetic withdrawal during STA (i.e. pure sympa-

thetic modulation), and during SUP where there is pure va-

gal modulation. The extended HF parameter and the clas-
sical SB will be used for comparison. This analysis will be

performed using the Friedman test for repeated measures

with α = 0.05 and, when required, a multicomparison test

will be implemented with the Bonferroni correction.

3. Results and Discussion

The relative power of the respiratory component calcu-
lated using LS-SVM (yk

x
) was always larger than its lin-

ear counterpart (yl
x

). However, according to the surrogate

data analysis this increase was not significant (p > 0.05)

for some segments. In total, 3 (SUC), 2 (STC), 2 (SUA),

4 (STA), 3 (SUP), and 1 (STP) segments were identified

as having only linear cardiorespiratory interactions. It is
important to remember that the parameters calculated us-

ing LS-SVM take into account both the linear and nonlin-

ear interactions between heart rate and respiration. There-

fore, for these segments with no significant increases, the

kernel-based estimates, namely yk
x

and SBk
u were replaced

by their corresponding linear values. As a consequence,

ynl
x

= 0 for some cases.

After correcting for non significant values, the param-
eters were compared for each phase and the results are

shown in Figure 1. It is clear that the quantification of

the cardiorespiratory interactions is underestimated by the

linear model in all phases since there is often a nonlinear

part that can be quantified using LS-SVM. Furthermore,

the HF parameter tends to underestimate the vagal mod-
ulation on HRV, in particular during autonomic blockade,

as well as overestimate the sympathovagal balance. At this

point, it is clear that HF is not the most optimal parameter

as it has been already established in literature [1, 2]. This

again, is due to the presence of respiratory influences out-

side the HF band, as can be seen in Figure 2. The figure

shows the PSDs of a pair of signals from one subject dur-

ing STC. It is evident that the dynamics of the respiratory
signal fall within the LF band, which can only be taken into

account by the proposed estimations of RSA. Additionally,

the wide bandwidth of the respiratory signals in this data

[6] can also be observed in this example, which justifies,

as mentioned before, the selection of the more complex

model for the estimation of the parameters.

Concerning the differences between the phases, espe-

cially those between supine and standing position, the

novel indices were able to capture the vagal withdrawal

during this orthostatic maneuver. There was a clear trend

in all parameters towards a lower cardiorespiratory inter-
actions and an increased sympathovagal balance when go-

ing from supine to standing. For instance, in the estima-

tion of vagal activity, for the control phases before both

single blockades, only the relative power of the respira-

tory component extracted using LS-SVM was able to cap-

ture this difference (p < 0.05). The linear model, on the

other hand, was only successful in the control phases be-
fore atropine administration while no significant difference

was obtained with the classical HF in any of the cases.

When looking at the sympathovagal balance during con-

tol phases, the classical SB increased significantly when

going from SUC to STC. This was also the case for the

linear model, whereas the LS-SVM model could only cap-
ture this change before atropine administration.

In the case of complete parasympathetic withdrawal

(SUA-STA), only the linear model could capture the or-

thostatic change in both the vagal activity and the sym-

pathovagal balance. Moreover, both estimations of RSA,
P l
x

and Pk
x

, were larger than HF, with only Pk
x

signifi-

cant for both cases. One important result at this point is

that the pure nonlinear influences denoted by Pnl
x

make up

for a big part of the cardiorespiratory interactions during

the atropine phases. During control phases SUC and STC,

these interactions are significantly lower than the pure lin-
ear ones, while during SUA and STA they become more

relevant. This, however, does not seem to be the case dur-

ing sympathetic blockade (SUP and STP). These interac-

tions tend to be larger when going from supine to standing

independently of the administered drug, but the percent-

age of pure nonlinearities is larger during atropine admin-

istration. In [4], the quadratic cardiorespiratory interac-
tions were quantified using real wavelet biphase during a

tilt-table test. The study reported a reduction of quadratic

interactions when going from supine to standing, which

is somehow the case during control phases. Neverthe-

less, here not only second order interactions are studied

but other possibly higher order ones, which indicates that
the nonlinearities might account for more of the dynam-

ics of the HRV. These results suggest that there is a close

relationship between nonlinear respiratory influences on

HRV and sympathetic modulation. Furthermore, a differ-

ent mechanism appears to be responsible for the nonlinear
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Figure 1. (left) Vagal activity quantified using the classical HF and the relative power of the respiratory component of the

HRV (Px). (right) Sympathovagal balance quantified by means of the classical SB=LF/HF and the proposed unconstrained

versions (SBu). Significant differences between the phases are indicated by the diamonds, and differences with respect to

the classical parameteres, either HF or SB, are indicated by *.
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Figure 2. Power spectral density estimates of the respira-

tory signal and the HRV signal of a subject during STC.

The dashed line indicates the lower limit of the HF band.

interactions. For instance, the nonlinear influences could

be mediated by the respiratory pacemaker in the central

nervous system [9] through the sympathetic modulation

[6]. Additionally, they can be related to changes in blood
pressure. However, no strong conclusions can be made on

this point due to the low amount of subjects used in this

study and the lack of other cardiovascular information.

4. Conclusions

The approach proposed here allows to quantify both lin-

ear and nonlinear cardiorespiratory interactions. In this

way, a more complete picture of the cardiorespiratory sys-
tem can be envisioned. The results presented here sug-

gest that the linear and nonlinear interactions are mediated

by two different mechanisms. Further studies need to be

performed in order to identify these mechanisms. For in-

stance, studies that include blood pressure recordings dur-

ing stress tests and orthostatic maneuvers.
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