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Abstract

The method of fundamental solutions (MFS) has been
extensively used for the electrocardiographic imaging
(ECGI) inverse problem. One of its advantages is that it
is a meshless method. We remarked that the using cm in-
stead of mm as a space unit has a high impact on the re-
constructed inverse solution. Our purpose is to refine this
observation, by introducing a rescaling coefficient in space
and study its effect on the MF'S inverse solution. Results
are provided using simulated test data prepared using a
reaction-diffusion model. We then computed the ECGI in-
verse solution for rescaling coefficient values varying from
1 to 100, and computed the relative error (RE) and cor-
relation coefficient (CC). This approach improved the RE
and CC by at least 10 % but can go up to 40 % indepen-
dently of the pacing site. We concluded that the optimal
coefficient depends on the heterogeneity and anisotropy of
the torso and does not depend on the stimulation site. This

geneous, inhomogeneous, and inhomogeneous-anisotropic
forward models. Then, we investigated whether a scaling
factor added to the MFS kernel can compensate for it.

2. Methods
2.1. Standard MFS

The solution given by the MFS approach is represented
in the form of a linear superposition of source functions lo-
cated on a set of virtual source points y;,7 = 1... M over
an auxiliary surface [1]. The method uses a set of mea-
sured body surface potentials u(x;) at electrode positions
x;, (x;]i = 1... N) and attempts to express these in terms
of the source functions with weight factors a;. The source
functions and a; can then be used to predict the potential
at any point on the torso or cardiac surface.

When using Dirichlet and Neumann conditions we ob-
tain the linear system

suggests that it is related to an optimal equivalent conduc- Ai—1
2 T : a=>b (D
tivity estimation in the torso domain.
where
1. Introduction a (ao, a1, .. anr)”,
b = (u(z1),...u(zy),0,...,0)7,

Electrocardiographic imaging is a noninvasive tech-
nique to assess the electrical potential on the epicardial and
surface from measurements realized on the torso surface.
A meshless approach that employs the MFS technique has L fller =) flzr = yarll)
been adopted [1] to solve the inverse problem of electrocar-
diography. Its performance is similar to other, more elabo-
rate techniques such as finite-element models [2]. How-
ever, the MFS assumes a homogeneous isotropic torso e 1 f(llen = w1l fllen = yal)
f:onductlwty.. .I.n reality several organs have high deviat- 0 Of (lor — w1 ll) Of (llxr = yarll)
ing conductivities and some, such as the skeletal muscle, on T on
are strongly anisotropic. These heterogeneities have an ) .
important effect on forward solutions of the surface po-
tentials [3, 4], and therefore might affect the quality of 0 If(leny — 1) Of (lzn — ymll)
the MFS solution as well. To assess the severity of this  on T on
problem we tested the MFS on data generated with homo- 2)
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in which f(r) = 1/(4nr) is the fundamental solution of
Laplace’s equation in 3D, and ||« — y|| is the 3D euclidean
distance between points x and y.

2.2. MFS with scaling factor

We added a rescaling coefficient « to the kernel of the
MEFS matrix. The approximate solution of the MFS relies
upon the Laplace fundamental solution which hinges upon
the euclidean distance » = ||z — y|| . We made the as-
sumption that reducing the distance will help to make our
problem better conditioned. To do this let R be the new
reduced distance expressed by:

R=1 ,with a>1
«
F(R) = f(7) = af(r). ©)
Similarly,
Of(R) Of(5)  ,0f(r)
on  on " on “)

Taking this new distance R in the MFS matrix (2) amounts
to use the old distance r in the matrix A, given by the
expression

L af(fer —wl) af(llzr —yal)

Laf(len —ul) af(llen —yal)

20f (|1 — ) ?of (lz1 — ymll)

0 on on

a?0f(lzn — pll) a?0f(lon — yuml)

0 on on

)
In both cases the Tikhonov regularization method [5] with
a fixed parameter A = 1072 was used to stabilize the solu-
tion and obtain d.

2.3. Simulated data

Test data were prepared with a reaction-diffusion model
of the heart on a finite-difference mesh with 0.2 mm res-
olution. Computed transmembrane currents were trans-
ferred to a torso model with 1-mm resolution to com-
pute torso potentials [6]. Three sets of parameters were
used for the torso conductivities. The first was fully ho-
mogeneous and isotropic (HOM), the second piecewise
heterogeneous (lungs, liver, blood, skeletal muscles, and
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Figure 1. Relative errors and Correlation coefficients of
homogeneous model (HOM) with pacing site in mid ante-
rior septal junction (MAS]J), high anterior septal junction
(HASJ) and left ventricular septum (LVS).

the remaining tissue) (HET) and isotropic, and the third
model was the same as the second but the skeletal mus-
cles were anisotropic (ANISO). We simulated three cases
with different stimulation sites: mid anterior septal junc-
tion (MAS]J), high anterior septal junction (HASJ) and left
ventricular septum (LVS). All simulations were performed
with the Propag-5 software [7] on a Bullx cluster machine.

2.4. Evaluation of reconstructed potentials

To compare the reconstructed potentials on the epi-
cardium with the simulated ones correlation coefficients
(CC) and relatives errors (RE) were computed through
time and then averaged to get only two values for each
scaling factor. RE quantifies the amplitude difference and
CC the pattern similarity between the simulated and the
computed potentials.

3. Results

We studied the influence of the « factor inside the MFS
matrix for & € [1,...,95] with three different pacing
sites in each of the three models. Results for a com-
pletely homogeneous and isotropic torso model are shown
in Figure 1, those for a heterogeneous and isotropic one
in Figure 2, and those for a heterogeneous model with
anisotropic skeletal muscle in Figure 3.

The results show that RE and CC vary widely with o and
that the shape of the error function was different for each
model. For the HOM model, small values of « resulted
in the largest errors (Figure 1), whereas for the ANISO
model they resulted in the smallest errors (Figure 3). For
the HET model, both small and large « values resulted in

Page 2



Relative Errors Correlation Coefficients

0.95 v

0.85 v

—MASJ-HET —MASJ-HET

09 —HASJ-HET —HASJ-HET
: LVS-HET 08 LVS-HET
—a opt —a opt

0.85
0.75
0.8
0.7
0.75
0.65
07 /
0.65 06t
0.6 0.55
1 6 11 21 26 40 58 85 1 6 11 21 26 40 58 85
« «

Figure 2. Relative errors and Correlation coefficients of
heterogeneous and isotropic model (HET) with pacing site
in mid anterior septal junction (MAS]J), high anterior septal
junction (HASJ) and left ventricular septum (LVS).

Relative Errors Correlation Coefficients

13 08
—MASJ-ANISO —MASJ-ANISO
—HASJ-ANISO —HASJ-ANISO

L2 LVS-ANISO 075 | LVS-ANISO
—a opt —a opt

0.7

065+ //

0.6 1

0.55 |

0.6 -

1 6 11 21 26 40 58 8 %% 16 11 21 26 40 58 85
« «

Figure 3. Relative errors and Correlation coefficients of

heterogeneous and isotropic with anisotropic skeletal mus-

cles model (ANISO) with pacing site in mid anterior septal

junction (MASJ), high anterior septal junction (HASJ) and

left ventricular septum(LVS).

relatively large errors and the optimum solution was found
for intermediate values.

For all six cases an “optimal” scale factor could be
found. The effect of this factor on the reconstruction of
the signal is summarized in tables 1 and 2.

To illustrate the impact of a-optimization on recon-
structed electrograms we reconstructed the signal on the
heart for the standard MFS approach and the one with op-
timal scaling and compared them to the simulated one for
a location near the stimulation site (HAS]J in this case) as
shown in Figure 4.

Table 3 shows the estimated activation time at the pac-
ing site position. It is defined as the instant of steepest

Pacing Site | Model | MFS | Scaled MFS
HOM | 0.80 0.40
MASJ HET 0.86 0.63
ANISO | 0.88 0.72
HOM | 0.77 0.45
HASJ HET 0.85 0.67
ANISO | 0.87 0.77
HOM | 0.74 0.37
LVS HET 0.83 0.69
ANISO | 0.83 0.64

Table 1. Mean RE of the reconstructed potentials along
the time for the standard MFS Method and the “optimal”
scaled method.

Pacing Site | Model | MFS | Scaled MFS
HOM | 0.65 0.90
MASJ HET 0.63 0.78
ANISO | 0.62 0.72
HOM | 0.67 0.89
HASJ HET 0.58 0.77
ANISO | 0.57 0.68
HOM | 0.61 0.91
LVS HET 0.63 0.79
ANISO | 0.63 0.78

Table 2. Mean CC of the reconstructed potentials along
the time for the standard MFS Method and the “optimal”
scaled method.

Model Simulated | MFS | Scaled MFS
HASJ-HOM 9 ms 54 ms 25 ms
HASJ-HET 9 ms 55 ms 23 ms

HASJ-ANISO 9 ms 52 ms 22 ms
Table 3. Estimated activation time near the pacing site

for the standard MFS Method and the “optimal” scaled
method.

downstroke in the electrogram. The error approximates
45 ms for the original MFS method in each case, and ap-
proximately 15 ms error for the scaled MFS approach. The
modified method was also better at reconstructing the deep
S wave seen in the simulated signal which explains the im-
provements in the activation time reconstruction.

4. Discussion and conclusions

By applying the MFS to torso potentials with homoge-
neous and inhomogeneous torso models we have shown
that torso heterogeneity reduces the quality of the MFS in-
verse solution, both in terms of RE and CC. In addition
we have shown that the use of a scaling factor in the MFS
can reduce the RE in estimated cardiac potential by upto
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Figure 4. Comparison of reconstructed potentials for

HAS]J - standard MFS (red line) and scaled MFS (orange
line) - against simulated one (blue line) in a point near the
pacing site for three different torso models (a), (b) and (c).

50 % and improve the CC by upto 30 percent-points. We
conclude that the optimal coefficient depends on the het-
erogeneity of the torso and does not depend on the stimu-
lation site. In fact for the three stimulation cases the value
of the optimal coefficient was 40 (respectively, 13 and 18)
for the HOM (respectively HET and ANISO) case. We
can suppose that the obtained optimal coefficients are cor-
related with an optimal equivalent conductivity in the torso
domain.

In terms of RE and CC our correction worked best in
case of a homogeneous torso model. Thus, even with
this correction, the torso heterogeneity remains a prob-
lem for the MFS. Yet, if we focus on activation time
this method shows some promising results by reducing er-
rors by around 30ms. This is explained by the fact that
the slope of the electrograms obtained with the rescaled
method is better captured than with the standard one.

In this study we fixed the Tikhonov factor to understand

the results more easily. Using a method to find the opti-
mal regularization factor as described by Barnes and John-
ston [8] could improve them. Moreover, to determine the
optimal value of o we need to know the true solution. For
practical applications it would be of interest to develop a
method looking for both the optimal regularization factor
and the optimal scaling factor at the same time.
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