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Abstract 

Despite the number of techniques developed in the 
literature, the extraction of a clean fetal ECG (fECG) from 
non-invasive recordings is still an open research issue. In 
this work, different wavelet-based post-processing 
approaches for the denoising of the fECG were evaluated. 
A small dataset composed of twenty signals recorded from 
ten pregnant women between the 21st and the 27th week of 
gestation was adopted. fECG extraction was accomplished 
by using a multireference QR-decomposition-based 
recursive least squares adaptive filter. Then, all signals 
were decomposed with the stationary wavelet transform 
(SWT) and stationary wavelet packet transform (SWPT), 
using a 7-level decomposition with Haar mother wavelet 
and hard-thresholding. Two different thresholds from the 
literature were tested: the first one is level-independent 
(Minimax) while the other one is level-dependent. The 
latter was adapted to be exploited on SWPT. The 
enhancement of the fetal QRS complex was analyzed by 
computing the improvement of the signal-to-noise ratio 
and the performance of a fetal QRS detector. The 
comparative analysis revealed how the SWT outperforms 
the more complex SWPT, regardless the thresholding 
approach.  

 
1. Introduction 

The antenatal screening has a primary role considering 
the incidence of congenital heart diseases. The ultrasound 
methods represent the usual care, whereas the adoption of 
the non-invasive fetal ECG (fECG) is still largely relegated 
to the heart rate analysis. Among the different reasons 
behind this, the relatively low signal-to-noise ratio (SNR) 
has a big impact [1]. The powerline and instrumental 
noises, the electrophysiological maternal interference, and 
its spectral overlap with the fECG, the attenuation of the 
signal due to the different layers of tissue to be passed 
through for gathering the signal on the maternal skin, cause 
the very low SNR of the fECG.  

Beyond relying on an optimal acquisition setup, SNR 
can be enhanced by improving the three main steps of the 

fECG extraction process: pre-processing, separation and 
post-processing. Despite the large number of works on the 
separation step, few works focused on the post-processing. 
The oldest and most widely used technique is the averaging 
of the consecutive ECG complexes [2], [3]. In [4], the 
time-sequenced adaptive filter was applied to enhance the 
quality of multichannel fECG after the maternal ECG had 
been  removed. In [5], the enhancements achievable by the 
application of wavelet transform to fECG signals extracted 
by polynomial networks were presented.  

 In this work, different wavelet denoising post-
processing methods for the enhancement of non-invasive 
fECG were studied. Real non-invasive recordings from ten 
pregnant women were processed by multi-reference 
adaptive filtering, and the obtained fECG traces were 
decomposed with the stationary wavelet transform (SWT) 
and the stationary wavelet packet transform (SWPT). A 7-
level decomposition with Haar mother wavelet was used, 
along with hard thresholding, with two different 
thresholds: the Minimax and a level-dependent one by Han 
et al. [6]. Since their definitions were conceived for the 
standard wavelet decomposition, in this work they were 
opportunely adapted for the SWPT decomposition. This 
investigation was meant to perform a targeted denoising 
based on the fECG spectral bands of major interest, with 
coarser (SWT) or finer (SWPT) granularity. 

 
2. Materials and Methods 

Twenty multichannel non-invasive recordings from 
ten voluntary pregnant women between the 21st and the 
27th weeks of gestation, with healthy fetuses, were 
recorded with the Porti7 portable physiological 
measurement system (TMSi, The Netherlands) at a 
sampling frequency of 2048 Hz. For each recording, three 
non-coplanar bipolar thoracic leads were measured, and 
four among the twenty-four unipolar abdominal leads were 
used to give rise to two bipolar leads by digital subtraction. 
Simultaneously, the cardiac pulsed-wave Doppler signal 
was acquired by a Philips iE33 Ultrasound Machine 
(Philips, The Netherlands) in order to provide a ground 
truth to confirm the presence of fetal QRS complexes. 
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Recordings were performed at the Division of Pediatric 
Cardiology of the S. Michele Hospital (Cagliari, Italy). The 
study was approved by the Independent Ethical Committee 
of the Cagliari University Hospital (AOU Cagliari) and 
followed the principles outlined in the Helsinki 
Declaration of 1975. All the women provided their signed 
informed consent to the protocol. 

The raw signals were pre-processed in order to 
remove the baseline wandering artefacts by high-pass 
filtering at 1 Hz (1124-th order linear-phase equiripple 
finite impulse response filter). Then, exploiting the three 
ECG thoracic leads, the maternal ECG components were 
removed from the abdominal leads by a multi-reference 
QR-decomposition-based recursive least squares (QRD-
RLS) adaptive filter, with the forgetting factor set to 0.999 
and the length of the filter to 20 [7]. Finally, 20 processed 
abdominal leads (10 seconds long each) were extracted to 
produce the testing dataset used in this work. 
 
2.2. Wavelet denoising 

Wavelet denoising is a powerful signal processing 
technique widely exploited in biomedical field. It is based 
on three different main steps [8]:  
1. Wavelet transform by dyadic decomposition of 
the noisy signal in the time-scale domain (analysis).  

At this stage, the noisy signal is given as input to a 
couple of high-pass and low-pass filters, whose kernels are 
defined on the basis of the selected mother wavelet, in 
charge to split in two equal parts the input signal band. In 
the classical wavelet transform, the same procedure is 
iteratively applied to the output of the low-pass filter for a 
total number of times equal to the chosen decomposition 
level l. The filter outputs related to the lowest sub-band are 
called approximation coefficients whereas the others, 
whose spectral bands span from folding frequency fn down 
to fn/2l, are named details.  

In a different approach, known as wavelet packet, the 
outputs of the high-pass filters are also decomposed, 
resulting in a complete binary tree with 2l nodes or leaves, 
thus achieving a finer sub-band division.  
2. Thresholding of wavelet details. 

In this phase, details are compared to a threshold, 
whose definition can be level-dependent or not. 
Coefficients below this threshold are set to zero while 
those above threshold can be differently manipulated 
according to the chosen algorithm: in case of soft 
thresholding, their values are rescaled by subtracting the 
threshold, whereas in case of hard thresholding, their 
values are preserved [9].  
3. Reconstruction of the signal in time domain 
(synthesis). 

Finally, thresholded details and approximation 
coefficients are given as input to a mirrored trellis of high-
pass and low-pass filters,  whose definition depends on the 
wavelet properties (for orthogonal wavelet, quadrature 

mirror filters can be used, i.e. the filters in the synthesis 
trellis are the mirrored versions of the homologous ones in 
the analysis trellis, whereas biorthogonal wavelets make 
use of completely different filters for analysis and 
synthesis). 

In this work, we chose the stationary wavelet 
transform (SWT) and the stationary wavelet packet 
transform (SWPT) because of their translation-invariant 
characteristic. In this way, the morphology of the denoised 
signals is not affected by the fetal QRS occurrence over 
time. A level decomposition equal to 7 was chosen, so that 
wavelet denoising spreads until the frequency components 
of major interest for fetal QRS complex (around 8-20 Hz). 
Moreover, Haar mother wavelet and hard thresholding 
were chosen for every denoising approach: the former 
because of its better performance compared to other 
mother wavelets (data not shown), the latter in order to 
avoid the shrinkage effect associated to soft-thresholding.  

In order to compute the threshold value, the Minimax 
[9] and a level-dependent method by Han et al. [6] were 
adopted. In particular, the latter was conceived to be 
progressively more aggressive at the higher frequencies. 
Their definitions are, respectively: 

θj = σj(0.3936+0.1829 log2 (N)) (1) 

θj = 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

σj 2 ln(N)                         j=1

        σj 2 ln(N) / ln(j+1)     1<j<L  

σj 2 ln(N) / j               j=L
   

 (2) 

where N is the signal length in samples, L is the chosen 
decomposition level and σj is the standard deviation of the 
noise. In particular, σj was computed on a noisy portion of 
the signals in between fetal QRSs and estimated at each 
level j as: 

σj = 
MAD(cDj)

0.6745
 (3) 

being cDj the detail coefficients at the j-th level and MAD 
the median absolute deviation of such coefficients. 

Since these definitions fitted the SWT denoising 
approaches, in the case of the SWPT-based ones, 
thresholds were adapted. In particular, σj was calculated at 
each leaf as in (3). However, for the level-dependent 
threshold proposed in [6], it was adjusted considering for 
each SWPT leaf the corresponding SWT detail level on the 
basis of its spectral range and then adopting the related 
definition as in (2). 
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2.3. Comparative analysis and metrics 

In order to assess wavelet denoising performance on the 
real dataset, three different quantitative measures were 
employed. The first one is the SNR, which was evaluated 
as: 

SNRdB = 20 log10
Appf
4σ

 (4) 

where σ is the standard deviation of the noise and Appf 
represents the peak-to-peak amplitude of the average fetal 
QRS complex. The average QRS complex was calculated 
only on highly correlated fetal beats, considering a 
Pearson’s correlation coefficient value higher than 0.6. A 
40 ms window was supposed to entirely enclose a fetal 
QRS complex. 

Then we computed the accuracy and the true positive 
rate of a fetal QRS detector [10], to investigate how the 
improvement of the denoised traces can turn out in a higher 
detection accuracy. Accuracy (Acc) and the true positive 
rate (TPR, or Sensitivity) were estimated as: 

Acc = 
TP

TP+FP+FN
× 100 (5) 

TPR =
TP

TP + FN
× 100 (6) 

where false positives (FP) and true positives (TP), as well 
as false negatives (FN), were exactly identified thanks to 
the fetal QRS annotations estimated by using the 
simultaneous Doppler acquisition. 

All these comparative metrics were computed before 
and after wavelet-based post-processing. Statistical 
significance (p < 0.05) was assessed by using the 
Wilcoxon test, due to the non-normality of the 
distributions. 

 
3. Results  

The box-and-whisker plots representing the 
distributions of SNR, Accuracy and TPR over the acquired 
dataset are depicted in Figure 1.  

It is evident that wavelet denoising improved the quality 
of the fECG signals, with a statistically significant median 
SNR improvement over 9 dB, compared to the original 
traces (p = 0.0001 for all the four cases). From this 
perspective, SWT and SWPT showed approximately an 
equivalent performance. However, the two thresholds 
presented an opposite behavior, since Han et al. [6] led to 
better performance on SWPT (median of 10.6 dB versus 
9.1 dB achieved with SWT, p > 0.05) whereas Minimax 
presented better performance on SWT (median value of 
11.0 dB versus 10.4 dB for SWPT, p > 0.05). 

As can be also seen from Figure 1, wavelet denoising 
effect on fetal QRS detection accuracy is controversial. In 
fact, it seemed to improve the accuracy only for SWT with 
Han et al. threshold, but there is no statistical significance. 

The other improvements were associated to a wider 
distribution dispersion, so that the minimum accuracy was 
worse than that achievable without any post-processing. 
However, for SWT approaches, median values were 
always higher than initial ones (64.57% for Minimax, 
65.6% for Han et al. vs. 54.2% for noisy traces, p > 0.05). 
The same did not hold for SWPT.  

Moreover, considering the same threshold, Acc 
performances were always significantly better in SWT 
implementation than SWPT one (p = 0.01). 

TPR results were significantly higher in post-processed 
signals compared to the original ones (p < 0.03 for all the 
four cases).  Focusing on the thresholds, TPRs were 
slightly higher in the cases of SWPT with respect to the 
SWT (p > 0.05). By looking at Acc and TPR, it is possible 
to guess that SWPT performance was affected by a larger 
number of FPs compared to SWT, which could be due to 
the stronger shrinkage effect of SWPT. This is confirmed 
by Figure 2, showing an example of denoised fECG traces. 
In general, SWT led to a better morphological preservation 
of the fECG signal whereas the SWPT led to lower fECG 
amplitude and significant distortions. In particular, the 

 

 
 

Figure 1. SNR (top), Acc (middle) and TPR (bottom) 
results obtained with SWT (red) and SWPT (black) 
denoising approaches. In each case, values are reported 
for noisy traces (blue) and for denoised ones, using the 
level-dependent threshold (by Han et al.) and the 
Minimax. Results were obtained on 20 traces from ten 
voluntary pregnant women with healthy fetuses.  
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combination of the Minimax threshold and the SWPT 
induced larger distortions. Furthermore, the higher 
complexity of the SWPT should be compensated by a 
significantly better performance, which was not verified in 
the proposed assessment.  
 
4. Conclusions 

The post-processing enhancement of the fECG obtained 
from non-invasive recording, employing the SWT and the 
SWPT, was analyzed in terms of SNR, fetal QRS detection 
accuracy and TPR. On the available dataset, with the 
proposed processing scheme, featuring a 7-level 
decomposition with Haar mother wavelet and hard-
thresholding, the SWT outperformed the more complex 
SWPT in the Acc outputs, regardless the adopted 
threshold, but the Acc improvements with respect to the 
absence of denoising was negligible. QRS detection seems 
to be negatively affected by a high number of FPs in WD 
processed signals, which deserves further investigations.  

Nevertheless, the results should be carefully analyzed in 
the light of some final considerations. At first, the SNR was 
computed on the average fetal QRS, which could lead to 
an underestimation because of the signal smoothing. The 
QRS detection accuracy and TPR are influenced by the 
chosen method, even though a robust technique was 
selected. Finally, SWPT thresholding was adapted 
exploiting a simple scheme, which could have had a 
negative impact on the measured performance. A more 
detailed study on this is then required to evaluate the best 
threshold adaptation strategy for SWPT in this specific 
scenario. 
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Figure 2. Example of SWT and SWPT denoising results 
with 7-level decomposition. From top to bottom: raw 
abdominal signal, SWT (Han et al.), SWT (Minimax), 
SWPT (Han et al.), SWPT (Minimax). On the right, a 
one-second zoom of each signal. 
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