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Abstract

In silico studies are often used to analyze mechanisms of
cardiac arrhythmias. The electrophysiological cell models
that are used to simulate the membrane potential in these
studies range from highly detailed physiological models to
simplistic phenomenological models.

To effectively cover the middle ground between those
cell models, we utilize the manifold boundary approxi-
mation method (MBAM) to systematically reduce the
widely used O’Hara-Rudy ventricular cell model (ORd)
and investigate the influence of parametrization of the
model as well as different strategies of choosing input
quantities, further called quantities of interest (QoI).

As a result of the reduction process, we present three re-
duced model variants of the ORd model that only contain
a fraction of the original model’s ionic currents resulting
in a twofold speedup in computation times compared to the
original model. We find that the reduced models show simi-
lar action potential duration restitution and repolarization
rates. Additionally, we are able to initialize and observe
stable spiral wave dynamics on a 3D tissue patch for 2 out
of the 3 reduced models.

1. Introduction

On the one hand mathematical models of the cardio-
vascular system are becoming more sophisticated. On the
other hand however, we can observe an increasing focus on
simplified or reduced models for several components, e.g.
electrophysiology or force development [1, 2]. The sys-
tematic reduction method used by Lombardo and Rappel
in [1] is based on a geometric and information theoretic ap-
proach and is called MBAM [3]. They managed to reduce
a high dimensional atrial cell model through a series of re-
duction steps and arrive at a model with only 26% of the
original model variables and 14% of the original param-
eters while retaining physiologically interpretable param-
eters, which is a major advantage compared to the more

commonly used phenomenological models. However, they
only reduced the model with regards to the voltage dyna-
mics after applying an S1S2 stimulation protocol. In our
opinion, this leaves some open questions concerning the
importance of initial parametrization of the model and the
choice of which model predictions need to be preserved
to obtain a reduced cell model with similar characteristics
to the original one. We investigate some of these ques-
tions by applying MBAM to the O’Hara-Rudy dynamic
(ORd) cell model [4], which is one of the most widely used
human ventricular cell models. We use two different ini-
tial parameter sets of the ORd model and first reduce the
model equations with regards to only a single action po-
tential (AP). Furthermore, we apply an S1S2 stimulation
protocol similar to the one used in [1] and compare all the
reduced model characteristics to the original model in 0D-
and 3D-simulations. Specifically, we investigate action po-
tential duration (APD) restitution, repolarization rate, and
the models ability to predict meta-stable re-entry pheno-
mena in a tissue patch.

2. Methods

2.1. Manifold Boundary Approximation
Method (MBAM)

MBAM is a model reduction scheme first described
in [3] and finds its application in areas including system
biology, power systems and biochemistry. Principally,
MBAM is applicable to any dynamical system, however,
some limitations apply. For further information, please re-
fer to [3, 5].

Mathematical models of dynamical systems can be
parametrized by a vector θ ∈ RN. If the model contains
N parameters, then the system measurement or QoI vector
y = ym(t,θ) sweeps out an N -dimensional hyper-surface
known as the model manifoldM. The goal of MBAM is to
find a low dimensional approximation toM, and therefore
an effective reduction of y, by finding its boundaries.

Computing in Cardiology 2019; Vol 46 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2019.357



MBAM is best described as an iterative four-step algo-
rithm. First, we calculate the Fisher Information Matrix
(FIM)

I = JT
θJθ with Jθ = ∂y/∂θ (1)

of the model at an initial guess of the parameters θ0. The
eigenvalues of this matrix are typically spread evenly over
many magnitudes for most dynamical systems. Since the
smallest eigenvalues correspond to parameter combina-
tions with little effect on the chosen QoIs, we can use the
eigenvector v0 of the smallest eigenvalue as an initial di-
rection onM.

In the second step, we want to find a parametrized path
θ(τ) through parameter space. We achieve this by numeri-
cally solving a geodesic equation onM

∂2θi

∂τ2
=
∑
j,k

∑
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∂ym
∂θl

∂2ym
∂θj∂θk

∂θj

∂τ

∂θk

∂τ
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As initial values for the geodesic equation, we use the val-
ues θ0 and v0. We monitor the calculated path θ(τ) until
the boundary ofM is reached, which is identified by the
smallest eigenvalue of the FIM approaching zero and be-
coming much smaller than the next smallest eigenvalue.
The boundary represents a limiting approximation to our
model. This limitation reveals itself in either single pa-
rameters or parameter combinations approaching zero or
infinity.

We then analytically evaluate this limit in the model by
changing the model equations. This typically either in-
volves the complete removal or reformulation of equations,
which leads to a new model with N − 1 parameters.

In a final step, we calibrate the QoIs ỹm(t,φ) of the
new model with the new and reduced parameter vector φ
by minimizing

min
φ

(
1

M

) M∑
m=1

|ỹm(t,φ)− ym(t,θ0)|
|ym(t,θ0)|

. (3)

This four-step process is repeated until the approximated
model cannot reproduce the original model’s behaviour
without significant error. For the purpose of this study,
we chose to stop the reduction process when the error as
defined in 3 was bigger than 10%.

2.2. Cardiac electrophysiology model

Mathematical models of cellular electrophysiology are
typically based on systems of ordinary differential equa-
tions (ODEs) in the form of

Cm
dV

dt
+ Iion(V,w, c) = Iext(t), (4a)

dw

dt
= mw(V,w, c) ,

dc

dt
= mc(V ,w, c) , (4b)

where V denotes the transmembrane potential between the
intra- and extracellular fluid, Cm is the membrane capa-
citance, and Iext is the externally applied stimulus current.
The ionic currents Iion are defined by the gating variables
w, which take values from 0 to 1 and regulate the trans-
membrane currents and in turn the ionic concentrations c.

In this study, we use the ORd model [4] to represent
human ventricular electrophysiology. Please note that we
adopt the modifications to the inactivation and recovery
gates of INa as proposed in [6] to overcome some of the
original models shortcomings with regards to tissue simu-
lations.

To prepare the model for the reduction using MBAM,
we have to choose appropriate parameters k and assume
that they have been log-transformed in the model, i.e.
θ = log(k). This transformation serves 2 purposes: 1)
we have to make sure that all parameters are restricted to
positive values, since negative values for most of the para-
meters, e.g. conductivities, are un-physical; 2) we are non-
dimensionalizing the parameters, which is important for
the correspondence between the local information (FIM)
and the global structure (boundary). We run the reduction
scheme as described in 2.1 with two different choices of
parameter sets:

kA = (GNa,fast, GNa,late, Gto, PCa, GKr, GKs, GK1, GNaCa,

PNaK, PNab, PCab, GKb, GpCa)
T

kB = (GNa,fast, GNa,late, Gto, PCa, GKr, GKs, GK1, GNaCa,

PNaK, PNab, PCab, GKb, GpCa,CMDN,TRPN,

BSR,BSL,CSQN, αCaMK, βCaMK,Km,CaMK, βτ )
T

For the meaning and initial values of these parameters,
please refer to [4].

As QoIs, we first use a single AP at a basic cycle length
of 1000 ms for the models with the above parametriza-
tions. We shall call these models A.1 and B.1 repre-
senting the parametrizations A and B. The voltage trace
of the AP was sampled to include the upstroke, the re-
polarization and part of the resting membrane potential.
Afterwards, we performed the reduction once more with
parametrization B but including a S1-S2 stimulation pro-
tocol. We stimulated the cell model five times at a cycle
length of S1 = 1000ms before applying a second stimulus
at S2 = {300, 350, 400, 1000}ms. Only the four S2 stim-
uli were sampled and used during reduction. We shall call
this model B.2.

2.3. Numerical methods

Model reductions and single cell simulations were run
in Python. We used backward differentiation formulas to
numerically integrate the initial value problems given in
(2) and (4) using an adaptive time step. To minimize (3),
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we used the L-BFGS-B optimization method proposed in
[7]. Tissue simulations were run using acCELLerate [8]
solving the monodomain equation. To ensure numerical
convergence, the cell model and monodomain time steps
were set to 1µs.

3. Results

After carrying out the iterative reduction of the ORd
model with MBAM, we were able to obtain three reduced
models called A.1, B.1 and B.2. In the case of models
A.1 and B.1 only the currents INa, ICaL, ICaNa, ICaK, IKr and
IK1 remain in the model, which indicates that the reduced
model still shows physical behaviour, since these currents
are the main contributors to the AP in myocardial cells.
Further reduction of these models will result in a signi-
ficant change in the AP morphology. A noticeable differ-
ence between these models is that we changed the formu-
lation of intracellular calcium in model B.1, meaning that
d[Ca2+]i

dt became zero during one of the reduction steps and
[Ca2+]i was clamped to 0.164µM. This is only possible
due to the more comprehensive parametrization. In model
B.2, we additionally retain the currents INaCa, INaK, ICab
and IKb. We estimated the simulation times of the original
model and each of the reduced models by computing 1000
action potentials at 1000 ms cycle length, which resulted in
roughly a two-fold speed-up. The simulations took 55.7 s,
35.8 s, 29.8 s, and 32.5 s for the original, A.1, B.1, and B.2
models, respectively.

We further determine how accurate the reduced models
can reproduce the behaviour of the original model by com-
puting APD restitution curves for each model using a S1S2
stimulation protocol with more S2 stimuli than in the re-
duction process. We acquired APD90 by calculating the
time between (∂V/∂t)max and 90% of repolarization of
each S2 stimulus after pacing the model for 5 beats with
1000 ms basic cycle length. The results are shown in fig-
ure 1. Although all models show restitutive behaviour, the
reduced models A.1 and B.1 significantly differ from the
original model. Especially for cycle lengths above 500 ms
we observe shorter APDs in these models. At cycle lengths
below 500 ms, we find more similar behaviour in all mod-
els. Reduced model B.2 shows very similar APD90 restitu-
tion over all cycle lengths used. The shorter APD in model
B.1 can further be observed for the repolarization rates at
1000 ms cycle length shown in figure 2. For models A.1
and B.2, the repolarization rate is similar compared to the
original model.

Finally, we used a cross-field stimulation protocol to ini-
tiate spiral waves on a 3D patch. The snapshots of the ob-
served dynamics are shown at 250 ms and 400 ms after the
premature S2 stimulus in figure 3. Models A.1 and B.2
show qualitatively similar behaviour compared to the orig-
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Figure 1. APD restitution of the original model and the
reduced models. We acquired APD90 for S2 stimuli in the
range from 300 ms to 2000 ms after pacing the models 5
times with S1 = 1000 ms before each S2 stimulus.
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Figure 2. Repolarization rate of all four models after pac-
ing 5 times with a cycle length of 1000 ms.

inal ORd model. For the given simulation setup, it was not
possible to initiate a spiral wave for model B.1. Addition-
ally, we observe that the reduced models A.1 and B.1 show
a slightly lower conduction velocity.

4. Discussion

In this study, we systematically reduced the O’Hara-
Rudy human ventricular cell model for two different
parametrizations based on the voltage trace of one ac-
tion potential and a dedicated S1S2 stimulus protocol.
We utilized a recently developed reduction method called
MBAM, which is well suited for models consisting of a
system of ODEs as present in cardiac electrophysiology
models [1]. Independent of the parameter set, we were able
to remove many currents from the original model includ-
ing INaL, Ito, IKs, INaCa, INaK, INab, ICab, IKb, IpCa, leaving
only the currents which are known to be important to the
morphology of the action potential. In the model B.1, the
repolarization phase is mainly governed by ICaL, IK1 and
IKr. As seen in figure 2, this leads to a change in repolar-
ization rate compared to the original model. Specifically,
the overall APD is up to 30 ms shorter and the overall re-
polarization is more rapid in models with parameter set B
compared to the original model or model A.1 with param-
eter set A.

Although we did not specifically take restitution dyna-
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Figure 3. Snapshots of a 3D simulation using
a 30 mm x 30 mm x 0.1 mm homogeneous domain
discretized by tetrahedra with 0.18 mm average edge
length. The intracellular conductivity σi,ORd, A.1, B.1, B.2 =
{0.0088, 0.009, 0.0097, 0.0088}S/m was set to result in
an isotropic propagation velocity of 133 mm/s. We used
a cross-field stimulation protocol (top right picture) with
two S1 stimuli at 500 ms followed by one S2 stimulus at
ERP + 150ms.

mics into account for all our models, they still show rea-
sonable APD restitution behaviour. For cycle lengths of
500 ms and above, the reduced models A.1 and B.1 show
a more flat and linear restitution curve with shorter APD90

than the original model. Model B.2, where S1S2 restitu-
tion was considered during the reduction process, is very
similar to the original model.

The spiral wave dynamics of the reduced models were
evaluated on a homogeneous 3D patch model. Using a
cross-field stimulation protocol, we were able to initiate a
spiral wave on all models except model B.1. This could be
due to the missing formulation of the intracellular calcium
concentration, which was set to a constant value during the
reduction process of this model. In tissue simulations, this
leads to a prolonged repolarization phase and therefore to
a longer effective refractory period.

Unsurprisingly, the computation of the reduced models
has become more efficient through the removal of a large
portion of the equations. We note that the computation of
these models is still far inferior compared to most of the
purely phenomenological cell models. However, with the
reduced models presented in this study, we still have a co-
nnection to physiologically relevant parameters contained
in the model equations.

In conclusion, we show that fewer, more purposefully
chosen parameters might be more efficient to find a re-
duced model with the desired behaviour. Additionally, it
is sufficient to reduce the model only with regards to the
transmembrane voltage to obtain a minimal model with
qualitatively correct dynamic behaviour. However, inclu-

ding the desired behaviour in the reduction will noticeably
improve the results.
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