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Abstract

Features of calcific leaflet distribution from CT valve im-
ages may allow prediction of hemodynamic disease sever-
ity in calcific degenerative aortic valve stenosis (DAS). The
proposed study describes a signal processing scheme for
selecting valve areas from maximum intensity projection
valve images in a cohort of 52+43 patient images, diag-
nosed as having severe and moderate DAS. First the valve
center and perimeter are approximated by a manually de-
termined circle of radius r and center (x,y). The circle is
then used to define eight masks, based on concentric cir-
cles of radius r
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2 and r, each with center (x,y).
The masks are used to define pixel regions within the valvu-
lar area, and statistical and textural descriptors are ap-
plied to each. Sensitivity/ specificity testing is performed
with these descriptors, applied to the pixels within each
mask, which show that disease severity is best predicted by
using the smallest, most central mask and statistical fea-
tures of skewness and kurtosis, providing area under the
curve of 0.844 and 0.840 respectively. Our methodology
was simple to implement and use, and provided good dis-
criminatory power for disease severity. It also overcomes
some difficulties in an earlier method, since our solution is
scalable to variation in aortic valve size and tests a range
of statistical and textural descriptors.

1. Introduction

Aortic stenosis is the most common valvular heart dis-
ease in Europe and North America, with high preva-
lence (2-7%) in the population aged above 65 years. Its
most common cause in adults is calcification of a normal
trileaflet [1], characterized pathologically by large nodular
calcific masses within the aortic cusps [2].

De Santis et al. [3] investigate the hypothesis of whether
the location of valve calcification influences the functional

severity of DAS. Using a single maximum intensity pro-
jection (MIP) image for each patient, Figure 1, they seg-
ment the aortic valve and define a central circular region
and a peripheral region. They calculate the mean attenu-
ation in each region (HU), compute the Center/Periphery
attenuation ratio, and show that this is a good predictor of
moderate / severe aortic stenosis.

Figure 1: Low-contrast MDCT image. Aortic valve annu-
lus plane was identified and a 10-mm maximal intensity
projection from the annulus plane towards the ascending
aorta. The valve was manually segmented in the resulting
short axis image (combined green and red region) and the
resulting area divided into central circular regions of 1.0
cm2 (green) and a peripheral region (red) [3]
figure

However, we note that (i) the manual segmentation of
the aortic valve is time-consuming; (ii) a constant 1cm2

central area is used across their analysis, whereas the area
of the aortic valve varies between subjects, since valvular
size is related to body surface; (iii) the statistical analysis
is simple, while there exists a range of pixel-based features
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Circle center and radius manually 
defined on MIPS of aortic valve, 
approximating valve borders.

Defined circle forms the basis for 8 masks, 
which are used to select pixels for analysis.

Figure 2: Definition of mask areas from low-contrast MDCT image: (Left) Short-axis image from 10-mm MIP from the
annulus plane towards the ascending aorta. (Right) Pixel regions after application of masks 1 to 8 (Table 1).
figure

which could provide better classification of disease sever-
ity.

Our objective was to develop image processing software
to improve disease classification, based on the above ob-
servations. First, accelerate the segmentation of the aortic
valve region in the MIP image with a simple and feasible
processing methodology. Second, develop more sophisti-
cated analyses of regional distributions of calcific deposits.
Third, create a methodology which is capable of automat-
ically scaling the analysis region depending on the size of
the aortic valve.

1.1. Materials

Patients with moderate or severe DAS were enrolled
in the study and images acquired using the protocol de-
scribed elsewhere [3]. (52+43) Patient images were ac-
quired, respectively diagnosed as having severe and mod-
erate DAS, using a 320-multidetector CT with low-dose
contrast (0.5ml/kg). Severe AS was diagnosed using
transthoracic echocardiogram according to the presence of
any of the following: aortic valve area=1.0cm2; mean gra-
dient=40 mmHg; peak aortic jet velocity=4.0 m/s. Patients
with moderate DAS did not have any criterium for severe
AS and at least one of the following: aortic valve area 1.0-
1.5 cm2; mean gradient 25-40 mmHg; peak aortic jet ve-
locity 3.0-4.0 m/s.

A 10 mm maximum intensity projection (MIP) was cre-
ated for the leaflet cross-section, including the entire leaflet
depth.

Image processing routines were written using Matlab
9.2 (Natwick, Math Works Inc., 2017) and the entire pro-
cessing took approximately 1 hour when run on a Windows
10 notebook with 16Gb of RAM, i7 7th generation proces-

sor, and a GeForce 940MX graphics card.

2. Methodology

Our image processing scheme was designed to approx-
imate the aortic valve, divide it into different regions, and
analyse the pixels contained in each.

(i) Valve segmentation was performed by manually ap-
proximating the valve circumference with a circle (of area,
A). First the circle center point is manually defined (x, y)
and then a second point is manually defined on the image
to determine the radius, r (Figure 2). The application of
this circular mask to the image generates the image shown
as Mask 4.

(ii) The division of pixels inside the circle into regions
for analysis was performed by defining and applying eight
masks. Masks 1 to 4 are circular regions, each centered on
the manually defined center point but with different frac-
tions of the circle with area A. The radii of circles in masks
1 to 4, are given by r
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2 r, r respectively. Masks 5

to 7 are intersections of masks 1 to 4, and mask 8 the pe-
riphery of mask 1 (Table 1 and Figure 2).

(iii) Analysis of the pixels in each region were per-
formed using the Radiomics package [4] in R Studio ver-
sion 1.1.463 [5,6]. First order statistical features (FOF), in-
cluding mean, variance, skewness, kurtosis and those listed
in Figure 4, were determined from pixel regions resulting
from application of the 8 masks for all patients. Next, sec-
ond order (textural) features were similarly extracted [7].
Area under the receiver operating characteristics (ROC)
curve (AUC) [8] was used to evaluate the ability of each
feature to predict DAS severity.

Page 2



Figure 3: Performance (Area under the ROC Curve) for all features tested, separated by class (First Order Features
(FOF), Gray Level Cooccurence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix
(GLSZM)
figure

Table 1: Definition of mask areas. Masks 5 to 8 are de-
scribed as the intersection of masks 2, 3, 4, 4 with the
complement of 1, 2, 3 and 1 respectively.
table

Mask: 1 2 3 4
Area: 1

4A
1
2A

3
4A A

Mask: 5 6 7 8
Area: 2

⋂
1C 3

⋂
2C 4

⋂
3C 4

⋂
1C

2.1. Results

All the features tested can be seen in Figure 3, where
first-order features are seen to out-perform the textural fea-
tures. Figure 4 provides a performance comparison be-
tween masks 1 and 4, and we see that the best features for
predicting DAS were found in mask 1. Mask 1 was the
best performer out of the eight masks tested.

The best performing features among those tested were
Kurtosis (AUC=0.840) and skewness (AUC=0.844), ap-

plied to mask 1.

2.2. Discussion

Our results show that statistical analysis of calcific
leaflet distribution from CT valve images is able to pre-
dict hemodynamic disease severity in DAS, with the valve
center seen as the most important region, an observation
which is paralleled in the literature.

Our segmentation approach involved approximating the
valve border with a circle, which is simpler and faster to
execute than the manual segmentation of the border used
in de Santis et al. We did not include independent selection
of the central region in our software, but relied on a con-
centric circle approach. In certain images, where the center
of the border circle does not match the meeting point of the
leaflets, more sophisticated software or manual placement
of the center might improve performance.

Our approach improves on the work by de Santis et al.
by providing discriminatory performance and a method-
ology which is scalable to patients with aortic valves of
various sizes.
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Figure 4: Best performing features after the AUC analysis, comparing mask 1 and 4. Features extracted from mask 4 (entire
valvular area) resulted, in every case, in lower performance than with mask 1 (central quarter area of valve).
figure

Future work could investigate the predictive ability of
masks with different areas, varying around 0.25 times the
circle area.

2.3. Conclusion

The proposed method has been shown to be a simple,
feasible and a powerful approach for identifying high-risk
valvular regions for patients with calcific DAS.
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