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Abstract 

The fluctuations of the duration of the electrical 
activity of the heart, measured as the time distance 
between Q-wave onset and T-wave end (QT), is under 
autonomic control. We studied the complexity of the QT 
variability regulation via the computation of sample 
entropy of QT variability during sympathetic activation 
induced by graded head-up tilt. Sample entropy was 
computed over the original QT series and after 
factorizing it into partial processes describing QT 
variability related to heart period, measured as the time 
interval between consecutive R-wave peaks (RR), linked 
to respiration (R) and unrelated to RR and R. We found 
that QT variability complexity is high and does not vary 
with the intensity of the stimulus. This result was the 
consequence of a non-significant tendency of the 
complexity of the QT variability related to RR to decrease 
and a significant raise of the complexity of the QT 
variability unrelated to RR and R with the magnitude of 
the orthostatic challenge. We suggest that the sample 
entropy of the QT variability unrelated to RR and R could 
quantify the increased heterogeneity of the neural inputs 
genuinely modulating QT during a sympathetic arousal. 

 
 

1. Introduction 

Complexity of the beat-to-beat fluctuations of heart 
period, derived as the time interval between two 
consecutive R-waves (RR) from the surface 
electrocardiogram (ECG), decreases during sympathetic 
activation and vagal withdrawal. For example, a decrease 
of sample entropy (SampEn) was observed during 
postural challenge and the reduction was gradual with the 
magnitude of the stimulus [1]. The time interval between 
the Q-wave onset and T-wave end (QT) depends largely 
on the previous RR [2], thus suggesting that QT 
variability complexity might follow the decrease of the 
RR variability complexity. At difference with the 

complexity of RR variability, the complexity of the QT 
variability in healthy individuals does not decrease during 
a sympathetic stimulus in healthy subjects [3-5] and it is 
higher in pathological populations featuring a dominant 
sympathetic drive compared to normal subjects [6-8]. The 
issue of estimating the complexity of QT variability is 
relevant because it was suggested that a limited 
complexity of the QT variability might lessen the 
arrhythmic risk [9,10]. In the present study we 
hypothesize that, despite the decrease of the RR 
variability irregularity during sympathetic activation, QT 
variability complexity remains high and this behavior is 
owing to the increase of the complexity of the neural 
actions genuinely modifying QT [11]. 

The aim of this study is to assess the complexity of the 
QT variability after decomposing it into components 
describing the portion of the QT fluctuations driven by 
RR, by respiration (R) and unrelated to RR and R during 
a graded orthostatic challenge [4,12]. Complexity of QT 
variability was assessed via SampEn [13]. 

 
2. Methods 

2.1. QT variability factorization 

First the mean value was subtracted from the series 
QT={QTn, n=1,…,N}, RR={RRn, n=1,…,N}, and R={Rn, 
n=1,…,N} and each sample was divided by the standard 
deviation. After normalization the current values QTn was 
described as a linear combination of p past values of QT, 
of the current and p past values of RR and R plus a 
sample of an autoregressive noise ηn [4] as 
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being the one-step delay operator and 
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open loop approach [14] the current values of RRn and Rn 
are modelled as realization of an univariate autoregressive 
process, namely nRRnRRn wRRzARR ,)( +⋅=  and 
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and wRR,n and wR,n are samples of white Gaussian noises. 
The coefficients aQT,i, bi, ci, and di were estimated via 
generalized least squares approach with stopping criterion 
over the variation of prediction error (threshold=0.001), 
while aRR,i and aR,i via traditional least squares approach. 
Both generalized and traditional least squares problems 
were solved via Cholesky decomposition method [4,15]. 
The model order p was optimized via the Akaike figure of 
merit for multivariate processes in the range from 4 and 
16 [4,15]. The QT series was factorized into three partial 
processes QTwRR, QTwR and QTwQT representing the 
portions of QT variability depending on RR, R and 
unrelated to RR and R respectively [4] with  

nwnwnwn QTRRR
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QTwRR, QTwR and QTwQT were obtained by filtering, 
respectively, wRR, wR and wQT with 
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The factorization held under the hypotheses of 
whiteness and uncorrelation of wRR, wR, and wQT [4,15]. 

 
2.2. SampEn 

SampEn assesses the complexity of x with x=RR, QT, 
QTwRR, QTwR, or QTwQT via the computation of the 
amount of information associated to xn that cannot be 
derived from d past values ),...,( 1 dxnn xx −−

− =x . SampEn 
is computed [13] as  
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of finding a pattern in the neighborhood of 
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− =⊕x  and −
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by dividing the number of matches by the total number of 
patterns and the operator <·> performs the mean over the 
time index n. The tolerance r was set to 0.2×standard 
deviation of x and d=3. 

 
3. Protocol and preprocessing 

3.1. Experimental protocol 

The database was exploited to evaluate the 
performance of open loop versus closed loop modelling 
structures in describing cardiovascular control [14]. 
Therefore, we refer to [14] for the full description of the 
protocol. The study adheres to the principles of the 
Declaration of Helsinki for medical research involving 
human subjects. The human research and ethical review 
boards of the ‘Luigi Sacco’ Hospital, Milan, Italy 
approved the protocol. Written informed consent was 

 
Figure 1. The line plots show examples of QT (a,d), RR (b,e), and R (c,f) series recorded from the same subject during T0 
(a,b,c) and during T90 (d,e,f). 
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obtained from all the subjects. Briefly, 15 healthy 
nonsmoking humans (aged from 24 to 54 years, median = 
28 years; 9 males) participated in the study. We acquired 
ECG (Biosignal Conditioning Device, Marazza, Monza, 
Italy) from lead II and respiratory movements via a 
piezoelectric thoracic belt (Marazza, Monza, Italy). 
Signals were sampled at 1000 Hz. We recorded signals 
for 7 min at rest in supine position with a tilt table angle 
of 0° (T0) and for 10 min during head-up tilt with tilt 
table angles randomly chosen within the set {15°, 30°, 
45°, 60°, 75°,90°} (T15, T30, T45, T60, T75, T90). Each 
head-up tilt session was preceded by a T0 phase. The full 
sequence of angles was completed by all subjects without 
experiencing any sign of presyncope. During the protocol 
the subjects breathed spontaneously but they were not 
allowed to talk.  

 
3.2. Beat-to-beat series extraction 

R-wave peaks were located according to a threshold on 
the first derivative and parabolic interpolation. The time 
distance between consecutive R-wave peaks was taken as 
RR. The T-wave end was located over the T-wave 
downslope where the absolute first derivative went below 
a threshold set as a 30% of the absolute maximal first 
derivative computed over the current T-wave downslope 
[16]. QT was approximated as the time distance between 
the R-wave peak and T-wave end [16]. The nth QT 
intervals followed the nth RR. The R signal was sampled 
in correspondence of the first R-wave peak delimiting the 
nth HP. If an automatic detection of R-wave or T-wave 
apex was judged to be erroneous or missing, the 
automatic procedure was run again locally. If isolated 
ectopic beats were detected, the abnormal values were 
substituted with their linear interpolation using the closest 

values unaffected by ectopic beats. Sequences of about 
250 consecutive values were analyzed. 

 
3.3. Statistical analysis 

Pearson correlation analysis was carried out to assess 
the degree of the association of SampEn with tilt table 
angles. Pearson product moment correlation coefficient r 
and type I error probability p were calculated. A p<0.05 
was always considered as significant. 

 
4. Results 

Figure 1 shows the QT (Figs.1a,d), RR (Figs.1b,e) and 
R (Figs.1c,f) series recorded from the same subject during 
T0 (Figs.1a,b,c) and T90 (Figs.1d,e,f). During T90 QT 
and RR shortened, low frequency rhythms were more 
evident in QT series and fast fluctuations of RR 
synchronous with R were reduced. 

Figures 2 and 3 has the same structure and show the 
decomposition of QT series drawn, respectively, in Fig.1a 
and Fig.1d into QTwRR (Figs.2,3a), QTwR (Figs.2,3b) and 
QTwQT (Figs.2,3c). The variance of QTwR was very small 
while that of QTwQT was larger during T90 than T0. 
SampEn was 1.73, 2.12 and 1.88 in Figs.2a,b,c and 1.33, 
2.19 and 1.97 in Figs.3a,b,c respectively. 

The SampEn of RR variability decreased progressively 
with tilt angle (r=–0.598, p=1.59×10-11), while SampEn of 
the QT dynamics remained unvaried (r=0.136, 
p=1.67×10-1). The SampEn of the QTwQT dynamics 
increased gradually with the magnitude of the orthostatic 
challenge (r=0.199, p=4.18×10-2), while SampEn of 
QTwRR and QTwR was unrelated to it (r=–0.160, 
p=1.02×10-1 and r=0.049, p=6.15×10-1 respectively). 

 

 
Figure 2. The line plots show the decomposition of the QT series given in Fig.1a into QTwRR (a), QTwR (b) and QTwQT (c). 

 
Figure 3. The line plots show the decomposition of the QT series given in Fig.1d into QTwRR (a), QTwR (b) and QTwQT (c). 
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5. Discussion 

The decrease of complexity of RR variability during a 
sympathetic activation is driven by the reduction of 
respiratory sinus arrhythmia and the concomitant rise of 
low frequency oscillations [1]. The complexity of QT 
variability regulation is the result not only of the neural 
inputs directed to the sinus node affecting QT dynamics 
via the QT-RR relation [2] but also of neural actions 
genuinely acting on the ventricles [4,12] and non-neural 
influences such as cardiac axis respiratory-related 
oscillations inducing synchronous changes on the 
projection of the electrocardiographic activity onto the 
assigned lead [4,16]. When the complexity of the QT 
regulation was assessed from the QT series, it was found 
to be greater than that of RR [5,9,10]. However, given 
that QT dynamics depend on RR changes [2], it might be 
hypothesized that, in presence of a sympathetic activation 
reducing the RR variability complexity, the QT 
variability complexity diminishes as well. Conversely, 
this study demonstrates that the increase of the 
complexity of QT variability unrelated to R and RR 
offsets the non-significant tendency of the RR-related QT 
variability complexity to decrease. Given that the QT 
variability unrelated to R and RR could be mainly 
attributed to the action of neural inputs directed to 
ventricles, we suggest that the heterogeneity of these 
inputs increases during a sympathetic activation. This rise 
contributes in keeping the complexity of QT variability 
high [5,9,10] and in decreasing the RR-QT coupling 
strength during sympathetic activation [17,18]. 

 
6.  Conclusions 

Sympathetic activation increases the heterogeneity of 
neural inputs genuinely modulating QT. The systematic 
assessment of the complexity of the QT variability 
unrelated to RR and R might provide new clues for the 
estimation of the arrhythmic risk linked to sympathetic 
arousals.  
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