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Abstract 

The objective of the PhysioNet/Computing in 
Cardiology Challenge 2020 is to identify clinical 
diagnoses from 12-lead ECG recordings. We developed an 
end-to-end deep neural network model to classify 27 
scored clinical diagnosis from Electrocardiogram (ECG). 
The Squeeze and Excitation (SE) layer, which can 
explicitly model channel-interdependencies within 
modules and selectively enhance useful features and 
suppress less useful ones,  and ResNet are integrated into 
a deep neural network, which is called SE-ResNet34 in our 
paper. We use the one- dimensional convolution to extract 
the features among different 12-lead ECG channels and 
the convolution network is a standard 34-layers ResNet. 
Finally, we also concatenate some demographic features 
from the ECGs and the deep features from the SE-
ResNet34 to identify clinical diagnosis. The evaluation 
metrics is calculated, which assigns different weights to 
different classes, according to the similarity between 
different classes. Our team named PALab ranked 10 out of 
41 teams in the official ranking and achieved a challenge 
validation  score of 0.653 and full test score of  0. 359. 

If confirmed in clinical settings, this approach could 
reduce the rate of misdiagnosed computerized ECG 
interpretations and improve the efficiency of expert human 
ECG interpretation. 

 
 

1. Introduction 

The 12-lead ECG plays a critical role in the clinical 
diagnoses, including varieties of  arrhythmias and other 
cardiac abnormalities. The early detection and 
classification of cardiac abnormalities can tremendously  
increase the chance of successful treatment.  

Automatic detection and classification of cardiac 
abnormalities can assist physicians in the diagnosis of the 
growing number of ECG recorded. Over the last decade, 
there have been increasing numbers of attempts to identify 
12-lead ECG clinical diagnosis, mainly including a variety 
of traditional machine learning methods, requiring 
extensive data pre-processing, feature engineering or 
handcrafted rules[1-2]. However, substantial algorithms 

have gained more attention by a specific class of models 
known as deep neural networks (DNN) in the past five 
years. Many of these algorithms have the potential for 
more accurate identification of cardiac abnormalities[3-6]. 
DNN consists of multiple processing layers, with each 
layer being able to learn increasingly abstract, higher-level 
representations of the input data relevant to specific tasks, 
which makes them particularly well suited to interpret 
ECG. Therefore, some authors integrate features from 
domain knowledge into DNN model to obtain a better 
accuracy and interpretation [7-8]. 

    The lack of appropriate data and well-defined 
evaluation has limited generalizability of automatic 
interpretation algorithm for 12-lead ECGs [9]. Much of the 
previous work used data from single, small, or relatively 
homogeneous datasets, which is limited by the small 
number of patients and rhythm episodes present in the 
dataset. These models perform well on the training set, but 
often fail to perform well on the external test set. The 
PhysioNet/Computing in Cardiology Challenge 2020 
provides an opportunity to address this problem by 
providing data from a wide set of sources. This paper 
attempt to design a robust model that automatically 
identify the cardiac abnormality in each 12-lead ECG 
recording by using the challenge ECG data [10].  

In this study, we developed a DNN model, more 
specifically SE-ResNet34, to identify 27 scored clinical 
diagnosis from raw 12-lead ECG using four different 
training dataset consisting of 43101 patients. In summary, 
we demonstrate that end-to-end deep learning approach 
can classify a broad range of distinct arrhythmias from 12-
lead ECGs. If confirmed in clinical settings, we believe 
that this approach has the potential to improve the accuracy, 
efficiency, and scalability of ECG interpretation.  

 
2. Methods 

2.1. Datasets Reprocessing 
Our research is based on the data from 

PhysioNet/Computing in Cardiology Challenge 2020. 
Figure 1. shows a typical example of 12-lead ECG data 
with atrial fibrillation (AF). As we can see, AF  is an 
abnormal heart rhythm (arrhythmia) characterized by the 
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rapid and irregular beating of the atrial chambers of the 
heart. 

 
Figure 1. Typical example of raw 12-lead ECG with atrial 
fibrillation. 

 
We ignored the INCART dataset which only has 74 

recordings of 30 minutes. In the remained datasets, each 
recording has an uncertain length ranging from 6 to 60 
seconds, which is sampled at 500Hz. For convenient model 
training with non-identical length of ECG recordings, each 
recoding has been truncated into length of 10 seconds 
(5000 sample points). In addition, if the data sampling  
frequency is not 500Hz, we should resample the data into 
500Hz. As showed Figure 2, if the length of original 
recording was less than 5000 points, we padded the 
recording into 5000 points by assigning zero values in the 
end of data.  If the length of original recording was longer 
than 5000 points, we truncated the recording into 5000 
points by discarding values in the end of data.  

 
Figure 2. Preprocessing of different data lengths 

 
A typical ECG heartbeat is characterized by a recurrent 

sequence of waves including P, QRS and T waves which 
represent the depolarization of the atria and ventricles, 
followed by repolarization of the ventricles. In this study, 
the ECG signals have not been filtered in the pre-
processing stage because of two main factors. On one hand, 
in this database, all the 12 leads recordings are used and 
the amount of the data is large. Using the original data 
rather than filtering them, the computation cost is 
significantly reduced. On the other hand, as mentioned 
above, most of arrhythmia detection algorithms have 
applied filtering to process ECG signals [1-2]. However, in 
this study, the proposed model shows good performance in 
anti-noise interference due to no filtering, demonstrating a 
potential for practical applications.  

In this study, PVC and VPB, CRBBB and RBBB，PAC 
and SVPB are classified as the same type of diagnosis.  
 
2.2. Model development 

A 34-layer ResNet was developed for the ECG 
classification task (Figure 3). In order to improve the 
efficiency of traditional CNN, the design includes 17 
sequential skip connections [11]. In each block, the same 
operations were performed. As shown in Figure 2, the 
modules consist of one-dimensional convolutional (1D 
Conv) layers, batch normalization (BN) layers, rectified 
linear units (Relu) of activation layer and SE layer.  

The convolution layer was the major feature learning 
component of the CNN, which involved a 7x1 filter with 
trainable weights that sliding across the signals to extract 
features from the waveform. When significant features 
were detected, the filters were activated by adapting the 
weights. Providing the labelled data, the model was able to 
learn the significant features that represented different 
diagnosis classes. 

 
Figure 3. The overall structure of the neural network 
architecture with repeated 34 1D convolution with skip 
connections  

 
Each learned filter was operated with a local receptive 

field, so that each unit of the transformation output was 
unable to exploit contextual information outside of this 
region. In order to tackle the issue of exploiting channel 
dependencies, we added SE layer (Squeeze-and-Excitation 
block)[12].  

Firstly, we squeezed global spatial information into a 
channel descriptor by using global average pooling to 
generate channel-wise statistics. Formally, a statistic 𝑧 ∈
ℝ$  was generated by shrinking 𝒰  through spatial 
dimensions 𝐻 ×𝑊 , where the c-th element of 𝑧  is 
calculated by : 

𝑧) = 𝐹,-(𝑢)) =
1

𝐻 ×𝑊22𝑢)(𝑖, 𝑗)
6

789

:

;89

<1= 

Page 2



Here 𝒰 = [u9, u@, … , uB] was the output of previous layer, 
𝒰 ∈ ℝ:×D×$ . The transformation output 𝒰  could be 
interpreted as a collection of the local descriptors, which 
were expressive for the whole signal. 

Secondly, to make use of the information aggregated in 
the squeeze operation and fully capture channel-wise 
dependencies, we employed a simple gating mechanism 
with a sigmoid activation. It could learn a non-mutually-
exclusive relationship since we would like to ensure that 
multiple channels were allowed to be emphasized opposed 
to one-hot activation: 

𝑠 = 𝐹FG(𝑧,𝑊) = 𝜎<𝑔(𝑧,𝑊)= = 𝜎<𝑊@𝛿(𝑊9𝑧)= <2= 

where 𝛿 refers to the Relu function, 𝑊9 ∈ ℝ
L
M×$and 𝑊@ ∈

ℝ$×LM , 𝑟 = 16. To limit model complexity and enhance 
generalization, we parameterized the gating mechanism by 
forming a bottleneck with two fully connected (FC) layers 
around the non-linearity, i.e. a dimensionality-reduction 
layer with parameters 𝑊9 with reduction ratio r, a ReLU 
and then a dimensionality increasing layer with parameters 
𝑤@.The final output of the block was obtained by rescaling 
the transformation output 𝒰 with the activations: 

𝑋R) = 𝐹,)STF(𝑢), 𝑠)) = 𝑠) ∙ 𝑢) <3= 
where 𝑋R = [𝑥X9, 𝑥X@, … , 𝑥X)]  and 𝐹,)STF(𝑢), 𝑠))  refers to 
channel-wise multiplication between the feature map 𝑢) ∈
ℝ:×D	and the scalar 𝑠). 

In order to integrate the demographic information, we 
also concatenate the age and sex with the features from 
convolution layers. Following this, a fully connected layer 
was used to transform the features to a 27x1 vector of 
numerical values, which corresponded to the outputs for 
each class. A sigmoid function was used to represent these 
values as a probability by normalizing them between 0 and 
1. The network took segments of length of 10 seconds as 
input, and produced a prediction for each segment. The 
model output was a probability for each class, and the 
predicted class was the one which probability greater than 
threshold. 

We randomly divided the model development data  into 
two parts: 80% for model training, and 20% for internal 
validation. The validation set was used to tune the 
parameters. We implemented all the models with Pytorch 
1.1, and trained them on machines with NVIDIA TESLA 
P100 GPUs. The adaptive momentum estimation (Adam) 
optimizer, with a learning rate of 0.001, was used to 
optimize the network parameters. 

 
2.3. Baseline Model  

In order to compare model performance for different 
parameters setting, we also designed several baseline 
models. Inspired by the  concept that the more network 
layers, the better model performance, we designed the 
ResNet50 model, which is same as ResNet34 model but 
with 50 layers. In addition, we also utilize LightGBM 

classifiers to identify clinical diagnosis. Firstly, we 
extracted features from ResNet50 model, including the last 
layer and penultimate layer of the network layer. Then we 
concatenated these features as the final features. Finally, 
these features were feed into the input for the LightGBM 
classifiers. 
 
2.4. Evaluation metrics 

The challenge metric awards partial credit to 
misdiagnoses that result in similar outcomes as the true 
diagnosis as judged by cardiologists. It originates from the 
institution that some misdiagnoses are more harmful than 
others and should be scored accordingly. Moreover, it 
reflects the fact that confusing some classes is much less 
harmful that confusing other classes. Figure 4 shows the 
Reward matrix W for the diagnoses scored in the 
Challenge. 

 

 
Figure 4. The Reward matrix W for the diagnoses scored 
in the Challenge, where columns are the true label and 
columns and rows are the predicted label 
 

 
3. Result 

For this year’s Challenge, organizers developed a new 
scoring metric that awards partial credit to misdiagnoses 
that result in similar outcomes or treatments as the true 
diagnoses as judged by our cardiologists. The predicted 
performance of different methods on intermediate 
validation set are illustrated in Table 1. As we can see, the 
SE-Resnet34 shows model outperformance (0.653) 
compared with other methods. In addition, the SE layer is 
critical for clinical diagnosis of 12-lead ECG. Table 2. 
shows the final testing set result of our model (SE-
Resnet34) in the official phase, where the challenge score 
is 0.359 on full test set. 
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Table 1. The performance of different methods on 
intermediate validation set. 

 
Model AUC Challenge Score 
Rsenet50 
Rsenet50+lgb 
Resnet34 
SE-Resnet34 

0.938 
0.951 
0.959 
0.967 

0.594 
0.624 
0.630 
0.653 

 
Table   2.   The model performance on the testing set in the 
official phase 

 
Model Challenge Score 
Test Database 1 Score 
Test Database 2 Score 
Test Database 3 Score 
Full Test Set Score  

0.836 
0.623 
0.144 
0.359 

 
4. Discussion 

We proposed a new deep learning model named SE-
ResNet34 to identify 27 clinical diagnosis from 12-lead 
ECGs. The model showed perfect classification 
performance on the PhysioNet/Computing in Cardiology 
Challenge 2020. Specifically, SE-ResNet34 achieved high 
and stable performance score measured by challenge 
metric (0.359) in the full test set. Considering the fact that 
manual interpretation of the electrocardiogram is time-
consuming, and requires skilled personnel with a high 
degree of training, this model can easily be applied to assist 
the cardiology doctors to identify the clinical diagnosis. 

It can be inferred that the challenge score is related to 
the incidence rates of each class, which is also proved in 
our previous study [13]. Therefore, given a set of clinical 
diagnosis with different incidence rate, we can adjust the 
cut-off value to dichotomize their predicted likelihoods for 
better challenge score. Considering the incidence rates 
significantly change over different classes, using different 
cutoffs may have a better potential to lead to better total 
utility score, which has been validated in our validation set. 
However, it is a little improvement in hidden testing set, 
which is probably overfitted in validation set and needs 
further confirmation in the future. 

Although SE-ResNet34 model can provide accurate 
classification of 12-lead ECGs, it still has some limitations. 
The generalization and stability of the proposed model 
needs to be systematically evaluated with more data in 
clinical reality.  
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