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Abstract

The ballistocardiogram (BCG), a measurement of car-
diogenic whole body movements, is a technique that en-
ables non-invasive cardiovascular monitoring. A main
challenge of the BCG signal is that its morphology and
amplitude are sensitive to the posture of the subject during
the recording period.

This work elucidates effects of posture on bed-based
BCG recordings by (1) creating templates for standing
BCG signals obtained from subjects in a prior study, and
(2) quantifying the distance between these templates and
BCG waveforms obtained in different body postures on the
bed for a new set of subjects. The signal quality index
(SQI), defined in previous work and corresponding to the
inverse of the distance to the templates, was the highest for
the supine posture and the lowest for the lateral postures.

A previously-reported system identification approach to
correct for distortions in the lateral, prone, and seated pos-
tures was further validated. The system identification algo-
rithm significantly improved the signal quality and correla-
tion to the reference morphology — the supine and stand-
ing BCG. This work has implications for robust signal pro-
cessing that allows for accurate physiological interpreta-
tion of the BCG obtained in a variety of postures from a
subject in bed.

1. Introduction

Continuous and unobtrusive vitals monitoring has
gained attention for the treatment and prevention of dis-
eases as the number of patients with chronic cardiorespira-
tory conditions grows. In home settings, such monitoring
may allow longitudinal tracking of the patient’s physiolog-
ical conditions [1,2]. Furthermore, it serves a key role in
hospitals for patient safety and earlier detection of patient
deterioration without increasing the burden on caregivers
[3].

Advances in sensing cardiogenic vibration signals have
paved the way for unobtrusive vitals monitoring. One of
the most commonly investigated sensing modalities for un-
obtrusive monitoring is the ballistocardiogram (BCG) [4].
The BCG measures the microdisplacement of the whole
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body in response to the movement of blood caused by car-
diac ejection [5]. Recent literature has reported promising
results for BCG use on monitoring physiological indica-
tors with unobtrusive, everyday objects such as a bed or a
bathroom scale, which do not interfere with normal daily
activities [6,7].

However, BCG measurement systems are sensitive to
the posture of the subject during the recording period, in
that the signal shape may be distorted when the subject’s
posture changes [8]. For BCG signals measured with a
weighing scale, subjects are required to stand upright and
still to obtain high-quality signals. Any modification in the
posture of the subject such as slouching will distort sig-
nal morphology, making the physiological interpretation
of the BCG challenging. Additionally, for bed-based BCG
recordings, commonly used for long-term monitoring such
as overnight sleep studies [9], changes in body posture
are inevitable — subjects may lay supine for part of the
night, then laterally for some time, then prone, for exam-
ple. Moreover, bed-based BCG is even more susceptible
to postural effects than standing BCG as the head-to-foot
and dorso-ventral forces are unavoidably coupled together
in the measurement [4].

To investigate postural influence on BCG signals, the
postural effects on standing and seated BCG signals mea-
sured with the scale have been quantified and corrected in
[8]. However, such an approach has never been used for
bed-based BCG. This work quantifies the effects of body
posture on the bed on BCG signals measured with the load
cells in a hospital patient bed. The quality of BCG sig-
nals from five different postures — supine, left / right lat-
eral, prone, and seated are demonstrated using the stand-
ing BCG as a reference. Signal quality was assessed with a
previously described method in [10]. Furthermore, signal
morphology was corrected with the system identification
method found in [8].

2. Methods

2.1. Experimental Protocol

In total, 11 healthy subjects (Male: 6, Female: 5; Age:
27.8 £4; Weight: 71.54 +19.5 kg; Height: 172.27+12.3
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(a): A block diagram of pre-processing steps. (b): An example plot of ensemble-averaged raw beats for each

posture. (c): A boxplot of SQIs computed over standing BCG templates. Ensemble-averaged raw beats were used for each
posture to compute the SQI. * indicates a significant difference between each posture and the supine posture with a 95%

confidence level.

cm) were recruited for this study conducted under the ap-
proval of the Georgia Institute of Technology Institutional
Review Board (IRB).

BCG signals from the load cells embedded in a pa-
tient bed (Centrella™, Hill-Rom) along with the reference
Lead II electrocardiogram (ECG) signal were recorded
from a Biopac BN-ECG2 system while subjects were on
the bed. The outputs from the load cells were amplified
through a custom-designed circuit similar to [11]. All sig-
nals were continuously recorded via a data acquisition unit
(DAQ, MP150, Biopac Systems) with a sampling rate of 1
kHz.

During the protocol, subjects were asked to lay down on
the bed and remain still in five different postures including
supine (F), left and right lateral (P; and P,), prone (P3),
and seated (P4). The seated posture required the bed to be
adjusted to the seated configuration. Subjects remained in
each posture for one minute.

To generate templates of the BCG signal measured in the
standing upright posture, the data set from another study
was used. This data set consists of 30 healthy patients
(Male: 20, Female: 10, Age: 26.4 4+3.2, Weight: 70.95+
14.43 kg; Height: 172.94£9.69 cm). The subjects were
asked to stand upright on the force plate for two minutes
while the BCG and ECG signals were recorded.

2.2.  Pre-Processing

A block diagram of pre-processing steps is shown in
Figure 1(a). All signals were band-pass filtered with cut-
off frequencies of 1- 40 Hz for ECG and 0.5 - 12 Hz for
BCG. ECG R-peaks were detected by thresholding and
used as a reference for segmenting BCG signals into beats
corresponding to cardiac cycles. For each BCG beat, a few
samples before the ECG R-peaks were padded to account
for the filter length ¢ in the system identification, which
will be discussed in Section 2.3. This segmentation re-
sulted in a frame length of d = 600 samples after R-peaks

+ filter length ¢. The padded segment of length ¢ was re-
moved for testing.

A set of BCG beats extracted from the recordings while
the k™ subject was in the supine posture — denoted as B
— was used to generate a template for the supine posture.
Templates of supine (¢7) and standing (t*) BCG signals
were generated as done in [10], and the set of standing
BCG templates from all N = 30 subjects was defined as
Tp={t}, t}, ..., 1}

For all other postures, beats from the first 20 seconds of
the one-minute recording were smoothed with an exponen-
tial moving average filter with a window of five beats, and
included in a training set Bi-‘ (Bi-c e RE=M ;i = posture P,
M = number of heartbeats). The remaining beats from each
posture were included in a testing set Ul-k (Uik e ROM
= posture P, [ = 600, M’ = number of heartbeats). For
each training and testing set, beats from left and right foot
channels were included in equal proportions.

2.3. BCG Morphology Correction

To correct the BCG morphology distorted by the pos-
ture, a transformation function that maps distorted BCG
signals to “good-posture” BCG signals was found. In this
study, BCG signals from the supine posture were consid-
ered as “good-posture” BCG signals for beat correction,
as the signal quality was the highest in the supine posture
based on our analysis in Section 3, and prior knowledge
of BCG signals [4]. This transformation function can be
determined via a linear system identification method [8],
which can be formulated as a least-squares problem.

Here, for each subject k and posture P, the matrix A was
composed with lagged vectors from each training beat bﬁ j
(bk € Bk i = posture P;, j = j" beat), and the output vector
y was made up with samples from the supine template t’; .
The variable x serves as 1-D FIR filter coefficients for a
linear mapping between each training beat and the supine
BCG template. With the filter order ¢, and Hik denoting a
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transformation from posture P; to the supine template ¥,
mathematical expressions of y, A, and x are given as:
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The filter length ¢ was determined through 3-fold cross
validation and used for the final training. The least-squares
solution X that minimizes the /;-norm of error in (4) can be
expressed as (5). The Tikhonov regularization term & was
added in (4) as done in [8], and was set to 0.01.

min || y— Ax[3+8]| x |13 “4)
x € RM
% = (ATA+61)7'ATy 6))

The FIR coefficients X found for each training beat were
averaged across all training beats of posture P;, and the av-
eraged coefficients were used as the transformation func-
tion Hik during testing.

2.4. Evaluation

The evaluation of this work was based on the signal
quality index (SQI), a function of the inverse distance
between a captured signal and the reference template.
There are multiple methods to estimate distance, but the
dynamic-time feature matching (DTFM) distance in [10]
was used in this study. The work in [10] has shown this
metric to be a reliable measure of the signal quality for
noninvasive cardiac bio-signals.

To compare the morphology of raw beats and the cor-
rected beats for each posture, the SQI and Pearson corre-
lation coefficient were calculated. The three metrics com-
puted for each testing beat uﬁ j (uf-‘~ i€ Uik) were SQI against
the standing BCG templates (SQlanding), SQI against the
supine templates (SQlpine), and correlation to the supine
template (Pgypine). Note that SOLypine and Pgypine are for
intra-subject evaluation, such that scores were computed
against the supine template of the subject corresponding to
the test beats. SQIs were averaged over all testing beats of
each posture and the mean SQIs were reported as the final
scores. For consistent scaling, corrected, raw, and template
beats were normalized for SQI computation.

3. Results and Discussion

Figure 1(b) shows an example plot of ensemble-
averaged raw beats for each posture. Note that the whole

protocol was 10-minutes long without any interventions
that could result in physiological changes. Therefore,
the differences in morphology between postures shown
in Figure 1(b) are due mainly to postural changes. The
SOl tanding shown in Figure 1(c) quantifies this observa-
tion. The median SQI for the supine posture was the
highest with 0.67, followed by the seated posture (0.65).
Left and right lateral postures showed the lowest scores
(0.57 and 0.56, respectively), while the prone posture was
slightly higher with a score of 0.60. The SQIs here were
computed with the whole interval, which includes both the
training and testing beats for each posture. The seated pos-
ture in this work had relatively high SQI unlike the previ-
ous study [8], where significant distortions were observed.
This could possibly be due to the difference in the method
of measurement — in this work, the load-cells were fixed
to the frame of the patient bed, while the scale was placed
between the subject and the chair in [8], and thus the damp-
ened BCG forces were directly reflected in the recordings.

The supine posture had significantly higher SOl qnging
than all other postures, indicating that the morphology in
this posture — among the five postures explored — is clos-
est to the BCG measured in the standing upright posture, a
reference standard for the BCG measurement. Here, the
standing BCG templates are only used as the reference
for the evaluation of signal quality. For the beat correc-
tion, BCG recordings of each subject in supine posture —
the posture with the highest signal quality — were used
as the reference. This is because the standing BCG tem-
plates were measured from other subjects or at a different
time; thus the linear mapping of training beats to standing
BCG templates will lose temporal physiological informa-
tion specific to the subject. Linear mapping to supine BCG
templates, on the other hand, would reflect that informa-
tion as they were measured from the specific subject at the
same time point.

Figure 2(a) shows SQI;angine for both raw and corrected
test beats. Corrected beats have significantly higher SQI
than the raw beats for all postures. The same trend was
observed in Figure 2(b), where the SQI was computed
against the supine templates for test beats. The decrease in
distance to standing BCG templates demonstrates the im-
provement in signal quality in general, based on the gold
standard measurement. Furthermore, the decreased dis-
tance to supine templates indicates that the transformation
allows for consistency among BCG beats that are mea-
sured at the same time point. The correlation to supine
templates in Figure 2(c) also supports this result, showing
significant improvement after correction.

4. Conclusion

In this work, changes in BCG morphology induced by
the body posture on the patient bed were quantified. The
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Figure 2. (a)A box plot of SQI4nging for raw and corrected beats. (b) A box plot of SQIj,pine for raw and corrected beats.
(c) Pearson correlation coefficient between each posture and the supine template, before and after correction. * indicates a
significant difference between the corrected and raw beats for each posture with 95% confidence level.

assessment of signal quality was done — for the first time
— based on the distance between bed-based BCG and the
standard standing BCG. Furthermore, system identifica-
tion demonstrably corrected distortions in the signal mor-
phology due to different body postures.

Correcting postural effects on signal morphology may
not be required for the estimation of cardiac cycles as pos-
ture distortion would consistently appear in the same pat-
tern across neighboring beats while the posture is main-
tained. However, removing these effects is important for
investigating the in-depth correlation of BCG signals to
cardiorespiratory parameters, particularly those related to
timings and amplitudes of the I-, J-, and K-points of the
BCG, such as pre-ejection period (PEP), pulse transit time,
and aortic pulse amplitude [5]. The effects of morphology
correction on estimating such cardiorespiratory parameters
could be done as future work.
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