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Abstract

Atrial flutter (AFl) is a common heart rhythm disor-
der driven by different self-sustaining electrophysiological
atrial mechanisms. In the present work, we sought to dis-
criminate which mechanism is sustaining the arrhythmia
in an individual patient using non-invasive 12-lead elec-
trocardiogram (ECG) signals. Specifically, we analyse the
influence of atrial and torso geometries for the success
of such discrimination. 2,512 ECG were simulated and
151 features were extracted from the signals. Three clas-
sification scenarios were investigated: random set clas-
sification; leave-one-atrium-out (LOAO); and leave-one-
torso-out (LOTO). A radial basis neural network classifier
achieved test accuracies of 89.84%, 88.98%, and 59.82%
for the random set classification, LOTO, and LOAO, re-
spectively. The most discriminative single feature was the
F-wave duration (74% test accuracy). Our results show
that a machine learning approach can potentially identify
a high number of different AFl mechanisms using the 12-
lead ECG. More than the 8 atrial models used in this work
should be included during training due to the significant
influence that the atrial geometry has on the ECG signals
and thus on the resulting classification. This non-invasive
classification can help to identify the optimal ablation
strategy, reducing time and resources required to conduct
invasive cardiac mapping and ablation procedures.

1. Introduction

Atrial flutter (AFl) is an atrial tachycardia charac-
terized by electrical signals that repeatedly propagate
along various physiological pathways different from sinus
rhythm [1]. This arrhythmia is driven by different self-
sustaining reentrant mechanisms. Although AFl is not a di-
rect cause of death, it can cause significant symptoms and
complications - e.g., stroke and heart attacks. The most
commonly used treatment to restore sinus rhythm from
AFl conditions is ablation therapy. The problem of abla-
tion therapy consists in identifying the type of AFl, as each

mechanism requires a different ablation procedure. There-
fore, the doctor needs to know clearly the type of AFl in
progress before performing the ablation. To identify the
AFl mechanism, an invasive mapping of the electrical ac-
tivity of the atria is carried out using intracardiac catheters.

Using the 12-lead ECG to discriminate the type of AFl
with which the patient is affected would give doctors the
opportunity to plan the intervention in advance. Thus, re-
ducing the procedure time for invasive mapping and ab-
lation therapy. Multiple algorithms have been proposed
to discriminate AFl from other types of cardiac arrhyth-
mias, such as atrial fibrillation [2, 3]. Nevertheless, auto-
matic discrimination of different AFl mechanisms has not
yet been carried out.

In this preliminary study, we sought to discriminate
20 different simulated AFl mechanisms by using 12-lead
ECG signals. Moreover, we focused on the role of the ge-
ometries of the atria and torso for the success of this auto-
matic discrimination.

2. Methods

2.1. Simulated AFl scenarios

Based on the AFl mechanisms commonly differentiated
in literature [4, 5], precisely resembling documented clini-
cal AFl cases [6–8], and the simulations implemented in a
previous work by Oesterlein et al. [9], a database of com-
putational AFl scenarios was set up.

Cardiac excitation was modelled using the fast march-
ing approach to solve the Eikonal equation [10, 11].

The atrial electrophysiological activity was simulated on
the tetrahedral volume meshes of 8 bi-atrial anatomies,
generated from segmented magnetic resonance imaging
(MRI) data of healthy male and female subjects [12].

In total, 20 mechanisms/scenarios of AFl were imple-
mented, including right atrial (RA) flutter as well as left
atrial (LA) forms like macroreentry around the valves (sc1-
4), across the roof (sc9-11), focal ectopy (sc12-15), and
microreentries mediated by scars (sc5-8), and slow con-
duction areas (sc16-20). A complete list of scenarios is
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Table 1. Database of clinically informed manually param-
eterized AFl mechanisms

Mechanism Atrium Position Direction ID
Macroreentry RA Tricuspid Valve ccw sc1
Macroreentry RA Tricuspid Valve cw sc2
Macroreentry LA Mitral Valve ccw sc3
Macroreentry LA Mitral Valve cw sc4
Scar-related Reentry LA LPV post sc5
Scar-related Reentry LA LPV ant sc6
Scar-related Reentry LA RPV post sc7
Scar-related Reentry LA RPV ant sc8
Figure-8 Macroreentry LA Both PVs ant sc9
Figure-8 Macroreentry LA Both PVs post sc10
Figure-8 Macroreentry LA RPVs ant sc11
Focal Source LA RSPV anterior sc12
Focal Source LA RSPV posterior sc13
Focal Source LA LSPV anterior sc14
Focal Source LA LSPV posterior sc15
Microreentry LA ant MV annulus sc16
Microreentry LA ant LAA sc17
Microreentry LA ant RSPV sc18
Figure-8 Microreentry LA ant sc19
Microreentry LA post wall sc20

Right atrium (RA), left atrium (LA), left pulmonary vein (LPV), right
pulmonary vein (RPV), pulmonary veins (PVs), right superior pulmonary
vein (RSPV), left superior pulmonary vein (LSPV), mitral valve (MV),
left atrial appendage (LAA), clockwise (cw), counterclockwise (ccw),
anterior (ant), posterior (post), scenario (sc).

provided in Table 1.
Transmembrane voltages (TMV) were obtained by

aligning a template of their time course with activation
times. This TMV was calculated using the Courtemanche
et al.’s mathematical model of the human atrial action po-
tential including chronic atrial fibrillation remodeling [13].
From the TMV, the body surface potential map (BSPM)
was calculated on 8 different triangulated torso surface
models generated from segmented MRI data of healthy
male and female subjects [12, 14]. The boundary element
method was used to solve the forward problem of electro-
physiology [15]. From the BSPM, the 12-lead ECG was
extracted, including the 12-lead ECGs. A detailed descrip-
tion of the simulation procedure can be found in [16].

Each 12-lead ECG signal has a length of a single AFl
loop and a sample frequency of 1 kHz. The 12-lead ECG
signals are formed only by F-waves (flutter waves, P-
waves during AFl) without the QRS complex and T-wave
(representing ventricular activity) since the ventricles were
not included in the simulations (Fig. 1A-C).

A total of 2,512 12-lead ECGs were calculated from 20
simulated AFl scenarios on 8 atrial models with two orien-
tational variants each and 8 torso models. One of the atrial
models was not able to sustain sc12, sc13, and sc30 for ge-
ometric reasons. Therefore, these AFl scenarios were not
computed with this geometry.

2.2. Correlation analysis

The influence of atrial and torso geometry was assessed
by circular cross-correlation analysis. Correlation anal-
ysis was performed between ECG signals with different
atrial models, keeping AFl mechanisms and torso models
fixed. The same procedure was applied between ECG sig-
nals with different torso models while keeping AFl mecha-
nisms and atrial models fixed. The correlation coefficients
obtained were merged by averaging along the 12 leads.

2.3. Feature extraction

151 features were extracted from the 12-lead ECGs us-
ing several biosignal processing methods from different
domains, i.e., time, frequency, wavelet, entropy, and non-
linear recurrence analysis.

Among these features, and looking at the results, the F-
wave duration feature proved to be particularly relevant.
The F-wave duration was the duration time of a complete
cycle of atrial electrical activation of each specific AFl
mechanism, i.e., the length of the F-wave in the ECG sig-
nal. This feature was manually derived.

2.4. Feature selection

Greedy forward selection algorithm was implemented to
select a feature set. This algorithm started with an empty
feature set and added the feature leading to the highest ac-
curacy increase to the set at each iteration. The algorithm
was stopped when performance based on the validation set
could not be further increased. In order to handle possi-
ble correlations among features, the candidate feature to
be added to the set was only added if the correlation coef-
ficient with any of the already included features was <0.6.

2.5. Classification

Three classifiers were implemented for a 20 classes
discrimination: decision tree (DT), k-nearest neighbours
(KNN), and radial basis neural network (rbNN).

First, we wanted to simulate the scenario of having sim-
ilar geometries in each data subset. Therefore, the data
were randomly divided in training set, validation set, and
test set with ratios of 70%, 15%, and 15%, respectively.
Second, classifications were performed with leave-one-
atrium-out (LOAO) and leave-one-torso-out torso (LOTO)
algorithms. In the LOAO algorithm, 7 atrial geometries
were used in the training set and the remaining atrial ge-
ometry was used both in the validation and test set (50%
of the ECGs from this geometry in each set). This proce-
dure was cyclically repeated 8 times always changing the
validation/test atrial geometry. The average accuracy of
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Figure 1. A. Simulated scar-related reentry AFl located on the LPV with anterior direction of rotation (sc6 - white arrows)
on an atrial model generated from MRI. B. BSPM on torso model generated from MRI. The torso potential was obtained
by solving the forward problem of electrophysiology from the simulated TMV on the atria. C. Example of the F-wave
single loop of the 12-lead ECG signals extracted from the BSPM.

the 8 loops was used as performance parameter. The same
procedure was applied for the LOTO.

3. Results

3.1. Torsos and atrial models influence on
the ECG

The correlation distribution obtained from the correla-
tion analysis between ECG signals of the same AFl types
computed in the same torsos but on different atria showed
a median of 0.44 and an interquartile range (IQR) of 0.13.
On the contrary, a median of 0.78 and IQR of 0.11 was
found from the correlation analysis between ECG signals
of the same AFl types with the same atria but different tor-
sos. Fig. 2 shows an example of the effect that different
torso geometries and atrial geometries have on the 12-lead
ECGs (Fig. 2A. and B. respectively).

3.2. Random set classification

The rbNN achieved the highest performance with
89.84% accuracy on the test set using 10 features. The
KNN and DT classifiers achieved 83.25% and 81.02% ac-
curacy on the test set using 12 and 5 features, respectively.

F-wave duration was the most discriminative feature for
all classification algorithms. This single feature classified
the AFl mechanisms with a test accuracy of 74%, while the
entire feature set without F-wave duration reduced the test
set accuracy to 33% (rbNN).

Figure 2. Example of simulated ECG (lead I) of the AFl
scenario sc1 with different torso and atrial models. A. Lead
I simulated on the same atria model with 8 different torso
geometries. B. Lead I simulated on 8 different atria models
with the same torso geometry.

3.3. LOTO & LOAO

The LOTO and LOAO classifications with rbNN yielded
a test accuracy of 88.98% and 59.82% using 7 and 6 fea-
tures, respectively. In both cases, the F-wave duration was
selected as the first feature in the feature set.

4. Discussion and Conclusions

Simulations provide ideal and controlled scenarios
where the ground truth for AFl perpetuation is known in
all cases, allowing the analysis of each mechanism with-
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out the influence of secondary - or unknown - mechanisms,
e.g., other simultaneous AFls.

The results obtained with the random set classification
show that an automatic classifier can potentially identify
a high number of different AFl mechanisms using the 12-
lead ECG, or more precisely a single F-wave loop, when
similar geometries are present in each data subset. This
non-invasive method can help physicians to plan the most
appropriate treatment for the patients without the need of
prior invasive mapping.

The F-wave duration is a key feature for this classifica-
tion. The LOTO accuracy shows that the classifier is gen-
eralizing well to unseen torso geometries. The LOAO ac-
curacy shows a lack of ability to generalize with new atrial
geometries. These last three considerations can be linked
since atrial geometries have an influence on the F-wave du-
ration and on the ECG signals (Fig. 2B.). On the contrary,
an additional torso to the set of 7 used for training does not
yield much benefit, because different torso geometries do
not bring relevant changes on the F-wave duration and on
the ECG signals in general (Fig. 2A.), as also confirmed by
the correlation analysis. Therefore, more than the currently
used 8 atrial models should be included during training to
cover the relevant anatomical variability.

Further tests on clinical data are necessary to effectively
assess the proposed approach. Changes in conduction ve-
locity would also change the F-wave duration irrespective
of the geometry and should therefore also be varied.
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