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Abstract 

The main goal of this study is to develop an automatic 
classification algorithm for normal sinus rhythm (NSR) 
versus Atrial Fibrillation (AF) from a single channel short 
ECG segment. For this purpose, AF and NSR from 
PhysioNet/Computing in Cardiology Challenge 2017 
training dataset were used in this study. RR intervals were 
extracted using GQRS algorithm, and RR time series with 
less than 30 beats were excluded from the analysis. The 
stratified split was applied to create a training set (NSR: 
1521 and AF: 239) and test set (NSR: 1527 and AF:234). 
Shapelets were extracted by scanning RR time series in the 
training set and identifying statistically significant 
patterns. For classification, an XGBoost model was 
trained using the presence or absence of the top 100 
shapelets. Using the top 100 significant shapelets 
(Shapelet length between 5 and 29), we achieved the area 
under the ROC curve (AUC) and the area under the 
precession recall curve (AUPRC) of 0.94 and 0.77 in 
discrimination between AF and NSR. Among the top 100 
significant shapelets, we used all shapelets with length no 
greater than a certain threshold (maximum acceptable 
Shapelet length) for training different models. Increasing 
the number of shapelet features by varying the threshold 
from 5 to 30 in the model training improved AUC/AUPRC 
0.91/0.68 to 0.94/0.77 

 
1. Introduction 

Atrial Fibrillation (AF) is a common cardiac arrhythmia 
with an estimated incidence of 2.7-6.1 million in the 
United States [1]. Furthermore, AF incidence and 
prevalence are likely to increase, especially with the aging 
of the population. ECG-based AF detectors mostly analyze 
atrial activities (e.g., absence of P waves) [2-4], ventricular 
responses (e.g., irregularity in RR intervals) [5-7], or both. 
Different features from RR intervals, such as heart rate 
variability (HRV), geometric representation, and entropy 
are used to differentiate between AF and Normal Sinus 
Rhythm (NSR) [7, 8]. Shapelets are time series sub-
sequences that are maximally representative of a class [9]. 
In this paper, we aimed to use shapelet discovery to 
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distinguish between AF and NSR. The shape of the 
discovered shapelet will enable the interpretation of 
results. 
 
2. Method and Material 

A block diagram of our proposed method is shown in 
Figure 1. Given an ECG recording, first QRS detection 
takes place, followed by a shapelet discovery. Top 
shapelets will be classified as AF or NSR using an 
XGBoost Classifier. 

 
2.1. Data and Pre-processing 

AF and NSR from PhysioNet/Computing in Cardiology 
Challenge 2017 training dataset were used in this study 
[10]. This database contains short single-lead ECG 
recordings recorded by a hand-held recording device. 
Details about the challenge dataset can be found in [10]. 

QRS complexes were detected using GQRS algorithm 
implementation in the WFDB toolbox [11] after removing 
baseline wander using a moving average filter. Detected R 
peaks in QRS detection steps were used to create RR time 
series. RR time series with less than 30 beats were 
excluded from the analysis. The stratified split was applied 
to create a training set (NSR: 1521 and AF: 239) and test 
set (NSR: 1527 and AF:234). 
 
2.2. Shapelet Discovery 

Shapelet is a subsequence of a time series that 
maximizes predictive power [9]. In this paper, the 
significant shapelets were identified by the statistically 
significant shapelet mining (S3M) algorithm [12]. S3M 
consists of four steps: 

First, given a fixed shapelet length (the minimum and 
maximum shapelet length were set to 𝑤!"# = 5 RR 
intervals and 𝑤!$% = 30 RR intervals, respectively), all 
candidate shapelets were extracted by scanning RR time 
series from the training set using a sliding window with 
stride equal to one. For each candidate shapelet 𝑆, its 
distance with the time series of the 𝑛-th training sample 𝑇#, 
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denoted as dist(𝑆, 𝑇#), is computed as the minimum 
Euclidean  distance between 𝑆 and all sub-sequences of 𝑇# 
having an equal length with 𝑆 

 
dist(𝑆, 𝑇#) = min

&
EuclideanDist(𝑆, 𝑇#[𝑗: 𝑗 + |𝑆| − 1]) 

 
Where 𝑇#[𝑗: 𝑗 + |𝑆| − 1] is the 𝑗-th subsequence of 𝑇# 

of length |𝑆|. Therefore, for the given shapelet 𝑆, its 
distances to 𝑁 training samples were computed and are 
denoted as {𝑑', ⋯ , 𝑑(}, where 𝑑# = dist(𝑆, 𝑇#).  

Second, applying a distance threshold 𝜃 would lead to a 
partition of the training dataset 𝒯 into two subsets 𝒯 =
𝒯)*⨄𝒯)+, where 

𝒯)* = {𝑇# ∈ 𝒯	|	𝑑# ≤ 𝜃} 
𝒯)+ = {𝑇# ∈ 𝒯	|	𝑑# > 𝜃} 

 
Since the class labels of 𝑁 training samples are 

available, which are denoted as {𝑦', ⋯ , 𝑦(}, each choice of 
the threshold 𝜃 would give rise to a contingency table 
shown in Table 1. 
 
Table 1. A 2 x 2 contingency table as used by the S3M 
method for shapelet mining. 

Class label 𝑑𝑖𝑠𝑡 ≤ 𝜃 𝑑𝑖𝑠𝑡 > 𝜃 Row totals 
𝑦 = 1 𝑎, 𝑏, 𝑛' 
𝑦 = 0 𝑑, 𝑐, 𝑛- 

Column total 𝑟, 𝑞, 𝑁 
 

Third, to determine the optimal threshold 𝜃∗ for a given 
shapelet 𝑆, the statistical significance of the contingency 
table was assessed using the Pearson’s 𝜒/ test. The p-value 
of the test can be written as 
 

𝑝 = 1 − 𝐹0!Y𝑇0!(𝑛, 𝑎,, 𝑏,, 𝑐,, 𝑑,)Z 
 

Where 1) 𝐹0! denotes the cumulative density function 
(CDF) of a 𝜒/ distribution with one degree of freedom; and 
2) 𝑇0! is the test statistics of the 𝜒/ test 
 

𝑇0!(𝑁, 𝑎,, 𝑏,, 𝑐,, 𝑑,)

= 	
𝑁(𝑎,𝑐, − 𝑏,𝑑,)/

(𝑎, + 𝑏,)(𝑐, + 𝑑,)(𝑎, + 𝑑,)(𝑏, + 𝑐,)
 

 
Bonferroni correction was further applied to address the 

false positives induced by the multiple hypothesis testing. 
The Bonferroni-corrected significance threshold is written 

as 

𝛼 =
𝛼\

𝑁(𝑁 + 1)∑ (|𝑇| − 𝑤 + 1)1"#$
121"%&

 

 
Where the uncorrected significance level 𝛼\ is often set 

to be 0.05, ∑ (|𝑇| − 𝑤 + 1)1"#$
121"%&

 represents the number 
of candidate shapelets for each time series of length |𝑇|.  

Fourth, given the extremely large number of hypothesis 
test even for a small dataset (the number of tests would be 
at the order of millions when 𝑁 = 100), Tarone’s method 
was applied to efficiently prune those untestable shapelet 
candidates. Please refer to [12] for the technical details of 
Tarone’s method. 

A final set of statistically significant shapelets can be 
extracted from the training set following these four steps. 
Since applying the optimal threshold for each significant 
shapelet can create a partition of the dataset, these 
significant shapelets would also induce a patient by feature 
design matrix, where each feature would be the binary 
vector indicating the dataset partition. 

 
2.3. Classification 

Starting from the patient design matrix induced by the 
top 100 significant shapelets (the presence or absence of 
the top 100 shapelets), we trained an XGBoost binary 
classification model [13] to predict the binary label AF vs. 
NSR.  

 
 

2.4. Algorithm Evaluation 

The performance of the classifier was evaluated on the 
test set using the area under the ROC curve (AUC) and the 
area under the precession recall curve (AUPRC). We set 
the number of decision trees to be 200, where each tree has 
a depth equal to 3. The learning rate is set to be 0.1.  
 
3. Results 

A total of 138,492 significant shapelets were extracted 
from the training set. The top ten shapelets are shown in 
Figure 2. As shown in this figure, both mega RR variations 
(Figure 2, a-h) and micro RR variations (Figure 2, i and j) 
that were significantly different between AF and NSR 
groups are present in the top ten shapelets. 

 
 

Figure 1. Block diagram of the proposed algorithm. 
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Figure 2. Top ten shapelets identified from RR intervals for 
discrimination between AF and NSR. 

 
Using the top 100 significant shapelets (Shapelet length 

between 5 and 29), we achieved AUC and AUPRC of 0.94 
and 0.77 in discrimination between AF and NSR. The plots 
of the receiver operating characteristic (ROC) curve and 
the precision-recall (PR) curve are shown in Figure 3. 

Furthermore, among the top 100 significant shapelets, 
we used all shapelets with length no greater than a certain 
threshold (maximum acceptable Shapelet length) for 
training different models. Increasing the number of 
shapelet features by varying the threshold from 5 to 30 in 
the model training improved AUC/AUPRC 0.91/0.68 to 

0.94/0.77 (Table 2).  

 
(a) 

 
(b) 

Figure 3. (a)  the ROC curve and b) the precision-recall 
curve of the trained XGBoost model for prediction AF vs. 
NSR. 

 
Table 2. The area under the ROC curve (AUC) and the area 
under the precession recall curve (AUPRC) by varying the 
maximum shapelet length from 5 to 30. 
 

Maximum Shapelet Length 5 10 20 30 

Number of Shapelets Used 
in Training 10 14 79 100 

Test AUC 0.91 0.91 0.93 0.94 
Test AUPRC 0.68 0.72 0.77 0.77 
 
 
4. Conclusion 

In this article, a shapelet discovery was combined with 
XGBoost classifier for distinguishing atrial fibrillation 
from normal sinus rhythm. The promising performance of 
the trained model demonstrates that shapelet-based 
features have a great potential to discriminate between AF 
and NSR. More work is needed to assess the application of 
the proposed method in discrimination between AF, NSR, 
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other rhythms, and noise. 
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