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Abstract

Activity detection in atrial fibrillation (AF) electrograms
(EGMs) is a key concept to understand the mechanisms of
this frequent arrhythmia and design new strategies for its
treatment. We present a new method that employs Hid-
den Markov Models (HMMs) to identify activity presence
in bipolar EGMs. The method is fully unsupervised and
hence it does not require labeled training data. The HMM
activity detection method was validated and compared to
the non-linear energy operator (NLEO) method for a set
of manually annotated EGMs. The HMM performed bet-
ter than the NLEO and exhibited more robustness in the
presence of low voltage fragmented EGMs.

1. Introduction

Fragmentation presence in atrial fibrillation (AF) elec-
trograms (EGMs) has been extensively studied in the lit-
erature, with areas exhibiting complex fractionated atrial
electrograms (CFAEs) postulated as responsible for AF
maintenance [1]. However, the algorithms applied to de-
tect CFAEs are very dependent of the specific settings and
parameters used by the different operators.

Complementing CFAEs, the Activity Ratio (AR) index
was first introduced in [2]. By first applying a signal pro-
cessing algorithm the method obtains a binary signal that
classifies the EGM into active or inactive. It relies on the
non-linear energy operator (NLEO) [3], that relates the en-
ergy of a signal to the activity. The NLEO method has
been used to identify local activation times (LATs) that
represent the real activation of the tissue in contact with
the electrode [4]. However, its adaptive threshold entails
further validation of its parameters. Additionally, the filter-
ing steps applied might distort the signal, diminishing low
voltage signals associated to fragmented EGMs, which can
be miss-detected as inactive sections.

To improve the detection of fragmentation in atrial
EGMs, we propose an unsupervised approach based on
Hidden Markov Models (HMMs) [5]. Probabilistic gene-
rative model that approximates the true distribution of the
data using a set of hidden states and can hence describe the
evolution of observable events, i.e., EGMs, that depend on
inner hidden factors that cannot be observed. Our objective
is to train a HMM that can quantify the presence of activity
in a bipolar atrial AF EGM. The HMMs can operate in the
absence of training labeled data, making the whole train-
ing process unsupervised. Hence, no expert annotation is
needed for training and only EGM signals are required.

2. Materials

A total of 3780 AF bipolar EGMs of 2500 ms length
were acquired from 32 persistent AF patients using a 5
branch PentaRay catheter. All patients gave full informed
consent and the study was approved by the Institutional
Review Board of the center. The sampling frequency was
fs = 1 kHz, signals were band-pass filtered 30 − 240 Hz.
Signals exhibited different characteristics such as discrete
activations, fragmentation, double potentials or no signal
(noise). To validate the algorithm and compare it to the
NLEO method, the activity of 232 signals was manually
labeled by two electrophysiologists for activity presence,
0 for no activity and 1 for activity.

The HMM code employed in the study is available in
[6]. The hardware specifications of the system were: one
8-core Intel® Xeon® CPU 3.40 GHz processor, 16 GB
RAM, on 64 bits Windows 7 Professional. A Titan V GPU
was also used to validate and test the methods.

3. Methods

In this section, we provide a brief introduction to
HMMs, model training, and the NLEO method used to
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compare the EGM activity detection performance on the
labeled database.

3.1. Hidden Markov Model

A Hidden Markov Model or HMM consists of a
discrete-time, discrete-state Markov chain, with hid-
den states S = {s1, s2, . . . , sT : st ∈ 1, . . . ,H}, where
H is the number of hidden states and T the num-
ber of observation samples, plus an observation model
p(yt|st), where the observed sequence is defined by Y ={
y1, y2, . . . , yT : yt ∈ Rd

}
[7], and d is the data dimen-

sion. Figure 1 shows the HMM block diagram.

Figure 1. Hidden Markov Model block diagram.

The parameters of the model θ = {A,B,π} that define
a HMM are [2]:
• A = {aij : aij = p (st+1 = j|st = i)}, the state tran-
sition probabilities, i.e., the probability of changing from
one state to another for the next time instant.
• B = {bi : pbi

(yt) = p (yt|st = i)}, the observation
emission probabilities associated to each state. For our
model, the observations are real-valued continuous ob-
servations and hence a Gaussian conditional distribution
p(y|s) is assumed [5].
• π = {πi : πi = p (s1 = i)}, the initial state probability
distribution. In our model they are initially set according
to a K-Means clustering algorithm applied to the observa-
tions for a number of clusters equals the number of HMM
states H to accelerate the convergence to a solution.

In order to train the HMMs for EGM activity detection
we must solve three basic problems of interest:
1. Calculate p(Y |θ), the probability of the observations
Y = {y1, y2, . . . , yT } given the model θ = {A,B,π}.
2. Compute S = {s1, s2, . . . , sT : st}, the optimal state
sequence that best ”explains” the observations and that
maximizes p (S|Y, θ) given the observed sequence Y and
the model parameters θ.
3. Calculate the optimal model parameters θ that maxi-
mize p(Y |θ).

The solutions for these problems are well known [5,
7]. To solve the first problem we used the Forward al-
gorithm to compute p(Y |θ). For the second problem,
we employed the Viterbi algorithm, that optimizes the
argmax

S
p(S|Y, θ). Alternatively, the Forward-Backward

algorithm can also be implemented [5, 7]. To solve the
third problem we applied the Expectation-Maximization
(EM) method, also known as Baum-Welch algorithm. In
conclusion, given the number of hidden states H and ob-
servations Y = {y1, y2, . . . , yT }, we first compute the op-
timal θ that will allow us to later find the optimal hidden
state sequence that better explains our observations.

3.2. HMM for EGM Activity Detection

The input parameters to train the models were the num-
ber of hidden statesH , the number and length of the EGMs
(sequences),N and T respectively. No pre-processing was
applied to the signals. The dimension of the observations
in our application was d = 1. We applied the methods in
the previous solutions to train different HMMs for differ-
ent number of signals and durations, see Table 1. Further
details can be found in the Simulations section.

Figure 2. HMM EGM activity detection steps. A: Bipolar
EGM decoded sequence for H = 5 states. B: Activity
related to the states. C: HMM activity detection result.

Table 1. HMM trained models parameters.
Parameter Description Range

H Number of HMM
states

[2:1:10]

N Number of training
EGMs

[10,50,100,250,500]

T EGMs length (ms) [250,500:500:2500]
Total Trained Models 270

Once the model is trained, i.e., the θ = {A,B,π} that
best describe the observations is obtained, we apply the
following steps to detect the activity on the EGMs:
1. Decoding HMM States: Bipolar signals are directly
fed to the HMM model. The most likely states sequence
associated to the EGM is calculated. See Figure 2A.
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2. HMM State Activity: The state with the minimum en-
ergy associated to its decoded EGM observations is au-
tomatically considered to represent no activity. The rest
of the states are clustered and associated to EGM activity.
Therefore a binary signal is obtained taking value 0 when
the signal remains in the inactive state and value 1 for the
active states, as shown in Figure 2B.
3. Postprocessing: Similarly to the NLEO method, inac-
tive segments shorter than a refractory period M are set
to ’active’, merging neighboring sections. Active sections
shorter than D are discarded, which removes outliers and
voltage spikes, as Figure 2C shows.

3.3. NLEO for Activity Detection

The NLEO algorithm was chosen to compare the pro-
posed method. The NLEO applies a sliding window opera-
tion to the discretized EGM voltage signal x[n] as follows:

NLEO[n] = x2[n]− x[n+ 1] · x[n− 1]. (1)

The complete signal processing steps to detect the acti-
vity of a bipolar EGM is described in [8]. It consists of

1. Denoising and Baseline Wander Removal.
2. Apply the NLEO operator.
3. Gaussian Lowpass Filtering.
4. Adaptive thresholding to obtain a binary activity signal.
5. Postprocessing to merge close active sections and dis-
card short activations.

3.4. Simulations

Tables 1, 2 and 3 include all the simulated parameters
and their values for the methods. For the NLEO method,
we set different values for the Gaussian window sizeG, the
post-processing merge distanceM , the discard durationD,
and the adaptive threshold value V . For each of the 270
trained HMMs from the simulation parameters in Table 1,
we applied the same post-processing merge distance M
and discard durationD variables. We ran a total of 122210
simulations for the NLEO and 5670 for the HMMs.

Table 2. NLEO validation parameters.
Parameter Description Range

W Gaussian window size (ms) [10:10:100]
M Merge distance (ms) [0:5:50]
D Discard duration (ms) [0:1:10]
V Threshold values [0:0.01:1]

Total Simulations 122210

Table 3. Validation parameters for each trained HMM
model.
Parameter Description Range

M Merge distance (ms) [0:5:50]
D Discard duration (ms) [0:1:10]
Total Simulations per Trained Model 21

Total Simulations for the 270 Trained Models 5670

4. Results

4.1. HMM Evaluation

The HMM activity detection is based on unsupervised
learning. To evaluate the trained models and confirm they
are learning from the data, we calculated two probabilistic
model selection criteria: the Akaike Information Criterion
(AIC), and the Bayesian Information Criterion (BIC) [9].
They take the number of states of the models, and the train-
able parameters and analyze their complexity as follows:

AIC = 2 · P − 2 · L(θ| y, · · · , yN ), (2)

BIC = P · log(T )− 2 · L(θ| y, · · · , yN ), (3)

where P is the number of trainable parameters of the
model θ, L(θ| y, · · · , yN ) the log-likelihood of the ob-
served data for model θ, and T the length of the signals.

In Figure 3 we show the AIC and BIC metrics of a
trained model for N = 100 signals and T = 250 ms. AIC
and BIC perform similarly, and we appreciate that the op-
timal value of states is H = 5 or H = 6, with complexity
increasing for higher number of states.
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Figure 3. AIC/BIC analysis of a trained HMM. Training
parameters N = 100 signals and T = 250 ms.

4.2. Activity Detection Results

The F1score for activity detection was calculated to
compare NLEO and HMM methods. We computed the
F1Score for all the 122210 different NLEO and 5670
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HMM simulations for the 232 manually labeled AF EGMs.
The parameter combinations for the best performance on
both models is included in Table 4. The HMM method per-
formed better than the NLEO in terms of F1Score, 0.960
versus 0.902 respectively. In Figure 4 we include an exam-
ple of activity detection on different EGMs using the best
parameters of both methods and the manual annotations.

Figure 4. NLEO and HMM EGM activity detection meth-
ods compared to the manually annotated signals.

Table 4. Best F1Score for the NLEO and HMM EGM ac-
tivity detection methods on the manually annotated EGMs.

Method Parameters F1Score
NLEO W=70, M=50, D=0, V=0 0.902
HMM N=50, T=500, H=5, M=30, D=9 0.960

5. Conclusions

We have presented a new algorithm that detects EGM
activity in AF signals based on HMMs. The HMM learn-
ing was fully unsupervised, with no expert annotation in-
volved in the training. Additionally, the method does not
require pre-processing of the EGMs, which avoids sig-
nal manipulation and distortion caused by other filtering
pre-processing methods. We have compared our method
to the NLEO for activity detection on a manually labeled
database. Our method performed better and demonstrated
to be more robust regarding different voltage amplitudes
of the signals, it can operate automatically to detect EGM

activity and requires less parameters involved in the calcu-
lation. As future works, the HMM method can be applied
to electro-anatomical maps to assess the presence of frag-
mented areas in the atria of the patients and can serve as
prior step to narrow and detect local activation times in AF
EGMs.
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