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Abstract

This work aims to classify sleep stages based on
tachograms using Convolutional Neural Networks (CNNs)
and investigate advantages of specialized classifiers.

The tachograms of 5422 patients were extracted from
the Sleep Heart Health Study. A CNN was trained to
classify each 30s epoch into four distinct sleep stages.
The patients were divided into four subgroups by Apnoe-
Hypopnoe-Index (AHI). From each subgroup, 20 % of pa-
tients were held out as test data. One general model was
trained on all training patients and four narrowed models
were each trained on one subgroup. Furthermore, the gen-
eral model was retrained on the subgroups, yielding four
additional transfer learning models.

Our general model gained an average Cohen’s Kappa
score of 0.53. The general model outperformed the nar-
rowed models on each test subset. From the narrowed
models, training on the subgroup with AHI 5-15 achieved
best overall performance. However, a correlation exists
between the size of train sets and classification quality.
Transfer learning did not improve the results.

CNN models are capable of learning features from
tachograms with very good classification performance
compared to other works using heart rate only. However,
the pursued strategies for specializing classifiers did not
yield any advantages over our general model.

1. Introduction

Sleep staging is traditionally done from a polysomno-
gram (PSG). However, research in the last decade also fo-
cused on alternative ways for automatic sleep stage classi-
fication. These approaches usually incorporate a reduced
set of signals (e. g. electrocardiogram (ECG), radar, accel-
eration), feature extraction and machine learning. Many
successful approaches use cardiorespiratory features, es-
pecially heart rate variability and other features from the
tachogram. In accordance with the recent developments in
machine learning, utilized classifiers in sleep staging have
moved from basic approaches such as linear discrimination
analysis (e. g. [1] in 2015) to complex models such as long
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short-term memory (LSTM) networks (e. g. [2] in 2019).
The latter approach considers over 100 features related to
the cardiorespiratoy system [2]. Nevertheless, there is no
consensus on best suited features. Therefore, some recent
approaches skip the step of manually designed feature ex-
traction by applying machine learning directly to a signal.

Our model was inspired by Malik et al. (2018) [3]
who used a convolutional neural network (CNN) on the
tachogramm. Korkalainen et al. (2020) [4] and Sun et
al. (2020) [5] adopt a more complex network architecture
of extending the CNN by a bi-directional LSTM. How-
ever, there are some differences: Korkalainen et al. clas-
sified segments from the downsampled photoplethysmo-
gram (PPG) and Sun et al. focused on a parallel architec-
ture, that uses the R-peaks from the ECG and a downsam-
pled respiration signal.

Our work optimizes a mere CNN model on only
tachograms and additionally considers the patient charac-
teristic Apnea-Hypopnea-Index (AHI) by training data se-
lection for specialized models. We show that sleep stag-
ing from the tachogram by CNNs has a high potential and
compare specialized models to a general model.

2. Methods

2.1. Data and Preprocessing

We used only ECGs and metadata data from the full-
night PSGs of the Sleep Heart Health Study Visit 1
(SHHS1) [6, 7], containing a wide range of sleep quali-
ties, AHIs and comorbidities. Sleep stages according to
Rechtschaffen and Kales are available with the PSGs.

As preprocessing, we extracted a filtered beat-to-beat
interval (RRI) time series by QRS detection according to
[8,9] and iterative filtering to remove outliers according to
[10]. However, due to poor QRS detection, we excluded
382 of the 5804 patients from SHHS1, leaving 5422 pa-
tients for our analysis. To create appropriate input for a
CNN, we interpolated the RRIs linearly, resampled at 4 Hz
and normalized by subtracting and dividing by the mean
value of each night. Afterwards, we created overlapping
segments of 300s length, centered around each sleep stag-
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ing label. We excluded the first and last 5 min of each night
and segments with less than 170 RRIs, as the latter implies
a heart rate of less than 34 bpm. This results in a total of
5.1 million segments.

We generated a reduced number of classes for sleep
staging: (a) when using 2 classes, we distinguished Wake
and Sleep, (b) when using 3 classes, we distinguished
Wake, Non-REM Sleep and REM Sleep, (c) when using 4
classes, we distinguished Wake, Light Sleep (S1 and S2),
Deep Sleep (S3 and S4) and REM Sleep and (d) when us-
ing 5 classes, we distinguished Wake, S1, S2, Deep Sleep
and REM Sleep. We generally use 4 classes, other alloca-
tion is for comparison to the literature (Table 2).

2.2. Validation

Before training any models, we separated around 20 %
of the patients as our designated test set S'5**. AHI dis-
tribution in S5 is representative of the whole data set
and can therefore be separated into four subsets of test
data S{e5t, Stest., Stest, . Stest. The subscript index de-
notes the AHI range in the subset. Consequently, around
80 % of the patients remain as training set SX7**", which
is split into analog subsets S§™%", Strain Gtrain = Giran
as needed. The number of patients in these subsets varies
strongly (Table 1).

Table 1. Number of patients in sets and subsets.

AHI all 0-5 5-15 15-30 >30
Stram 4420 1318 1903 869 330
Gtest 1002 294 436 199 73

We expected several problems with using the full train
set in the grid search: overfitting, computing time, the later
varying subsets sizes (Table 1), and the presumably nega-
tive effect of acute cardiovascular diseases on classification
of the tachogram. Therefore, we identified 364 patients in
Strain that we assume to be heart-healthy, according to
the available meta data, and used only this subset S};‘ZZT’%
for the grid search.

We applied k-fold cross validation (kfcv) for both hy-
perparameter optimization by means of a grid search and
final model evaluation. For evaluation in the grid search,
we calculated the mean classification quality on the valida-
tion data over all folds. In contrast, for final evaluation on
the test data, classification of each segment was a majority
vote of all £ models.

For further interpretation, we generally evaluated model
performance by Cohen’s Kappa (k) [11] rather than ac-
curacy, to accommodate for class imbalances. For mere
inter-model comparison, i.e. in the grid search, we used
loss.

2.3. CNN Architecture

We started our optimization from the architecture de-
scribed by Malik et al., which stands out for using convo-
lutional layers with stride 2 instead of pooling layers. This
results in convolutional blocks with two convolutional lay-
ers that are equivalent in all features, except the stride is 1
for the first layer and 2 for the second layer.

In our architecture, a number of similar convolutional
blocks is stacked, flattened and then followed by dense lay-
ers and one output layer for classification (Fig. 1). In a grid
search, we varied
« the number of convolutional blocks between 3 and 7,

« the number of filters in each layer between 10 and 96,

o the filter sizes between 4 and 32,

« the number of dense layers between 1 and 3,

« the number of neurons in dense layers between 20 and
400, and

« the dropout rate between 0 and 0.5.

For each cross validation run, these hyperparameters were
the same in all layers they applied to. The general training
setup was Adam optimizer with learning rate 10~, cate-
gorical cross entropy as loss function and early stopping.

Input 300s *4 Hz
v

Convolutional layer
(s=1, ny=10...96, sy=4...32)

Convolutional layer
(5=2, ny=10...96, sy=4...32)
v

’ Dropout layer (d=0...0.5) ‘
v
’ Dense layer (ny=20. ..400)
v repeat 1-3 times
’ Dropout layer (d=0...0.5)
v
’ Output layer, 4 classes ‘

Conv. block,
repeat 3-7 times

Figure 1. Schematic architecture of CNNs in the grid
search. With stride s, number of filters n, filter size sy,
number of dense neurons n4, dropout rate d.

2.4. Specializing Classifiers

We used two strategies to specialize classifiers: (a) only
use a subset of the training data to train the model and (b)
train the model with all training data, and then use transfer
learning to retrain with a subset of the training data.

To explore these strategies, we used the best architecture
from the previous grid search and a 5fcv. We therefore
calculated five versions (i. e. by each fold) of
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3. Results

The overall performance (i.e. x) of the general model
M9 of 0.53 is equivalent to comparable current research
(Table 2). This best model from our grid search has 4 con-
volutional blocks with 32 filters of size 8, 1 dense layer
with 400 neurons, and a dropout rate of 0.3. It yielded a
mean £ of 0.47 in the 3fcv with Sirain

Comparing the general model to specialized models, it
stands out that for each test set, M9 performs at least as
good as any specialized model (Table 3).

The narrowed models M™ with their massively reduced
training set show a strong performance for their respec-
tive test set. However they only come close to MY for
AHIs <15. Note that for S{¢*5, and S%%, any model
M™ trained on patients with lower AHI will still perform
at least as good as M _ 5, and MZ 5, respectively.

In contrast, the transfer learning models M? perform as

well as MY on their respective test sets. However, they
show a slight drop in general performance on the other test
sets.
Table 2. Model performance (k) on test data, comparison
to the literature for different combinations of sleep stages
into classes. All models use input data from only the ECG
or PPG. Note that Sun et al. improved x to 0.59 for 5
classes when including an additional respiratory signal.

Number of classes 2 3 4 5

MY 0.65 0.65 0.53 0.51
Malik et al. 0.38 - - -
Korkalainen et al. - 0.65 054 051
Sun et al. - 0.65 - 049

Table 3. Model performances (x) on different test sets.

Testset Sip' Sb%  S5ls Sio'so  Siab
M? 053 053 054 051 051
My, 050 051 051 047 045
M s 051 050 052 049 049
M 5, 046 044 047 047 047
MZ3 040 037  0.40 041  0.45
M, 053 053 054 050 050
M! . 053 053 054 051 051
Mis 50 052 052 053 0.51 051
M? 4, 051 050 052 050 051

% 055 {x M9
[ n
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Figure 2. Mean « of models M9 and M™ on the respec-
tive Stst over number of patients in the respective S %"
(Table 1), i. e. the first boldly printed diagonal in Table 3.

As almost all models show the best performance on
Stest., we cannot assume a direct correlation between AHI
and performance. Rather, there seems to exists a correla-
tion between size of train set and performance (Fig. 2).

Further examination by randomly downsampling all
Strain to the same number of patients (i. e. 330) and train-
ing new models confirmed this hypothesis, as validation
performance only varied between x of 0.44 and 0.46 for
all AHI subgroups in that experiment. The grid search re-

sults on ST also support this.

4. Discussion

As we aimed to classify sleep stages based on
tachograms using CNNs, we found a CNN architecture
that performs similar to state of the art CNN-LSTM ar-
chitectures.

We confirm that the tachogramm contains essential in-
formation about sleep stages by using inputs that only con-
sists of the location of R-peaks in the ECG, just as Malik et
al. and Sun et al., whereas Korkalainen et al. account for
the waveform of the PPG. Our results rest on a large, in-
dependent test set of 1000 patients. However, we have not
tested our model on data from studies other than SHHS1.
Our main improvement to Malik et al. with its compa-
rable architecture is most likely the amount of data and
some optimization of the architecture. And even though
Korkalainen et al. also use significantly more data than
Malik et al., there are only ca. 800 PSGs for training and
90 for testing. Only Sun et al. include significantly more
PSGs and slightly more segments than our work.

In contrast to our work, both Korkalainen et al. and Sun
et al. use an additional bi-directional LSTM layer, there-
fore applying a more complex model to the data. We as-
sume that adding an LSTM layer to our own architecture
will further improve the results, just as reversely, we as-
sume the results of Korkalainen et al. and Sun et al. would
improve by further optimization of the CNN. Widening
the view to general cardiorespiratory sleep staging perfor-
mance in the literature, we find that that adding respiratory
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features and using an LSTM seem to be essential parts to
further improve the classification. This was shown for raw
signals ([5] with « 0.59 for 5 classes) and feature engineer-
ing ([2] with & 0.61 for 4 classes).

Regarding our second aim, the pursued strategy for spe-
cializing classifiers did not yield any advantages over gen-
eral classifiers. Neither specializing by AHI-narrowed
models nor transfer learning improved the classification
performance compared to the general classifier. Similarly,
the specialized models did not have any advantages over
the general classifier (e. g. computing time, amount of data
needed) that did not come with a decrease in performance.
On the contrary, we found a significant disadvantage in us-
ing narrowed models M ™ for subgroups with AHI >30, as
they seem to profit most from additional training data. We
assume, the reason for this are critically small subgroups
in our calculations, because of (a) the rather good results of
M 5 on Sig5, and S%¢ and (b) our appended experi-
ment that showed a strong decrease in performance when
randomly downsampling the train sets. Therefore, a sec-
ondary finding of our experiments with narrowed classi-
fiers is a strong dependence of the classification perfor-
mance on the train set size. This goes well with the ma-
chine learning truism “More data is always better”.

5. Conclusion

Even though literature generally shows that Neural Net-
works are capable of classifying sleep stages from the
tachogram and other time series, our research amplifies
that mere CNNs have a higher potential in this task than
previously assumed. Our next steps will be towards adding
an LSTM layer and using different cardio-respiratory time
series parallelly. Just as the literature suggests, our prelim-
inary research in these courses shows promising results for
both strategies.

Despite our negative results for specializing models by
AHI, we will still look further into other patient features
that might influence the automatic classification (e. g. body
mass index, age, medications), in accordance with our gen-
eral research in strategies for individualized classification.

However, from the dependency on train set sizes and
the undefeated performance of the general model with its
diverse training data, we assume that combining data from
various sources and studies will be essential for further im-
provements in sleep staging.
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