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Abstract 

The aim of this study was the detection of atrial 

fibrillation (AF) from continuous ECG analysis. In this 

study, an end-to-end deep learning scheme was proposed. 

When the scheme was applied, 30-second multi-lead ECG 

data segments with an overlapping window of 5 seconds 

were preprocessed and sequentially fed into a multi-layer 

residual convolutional neural network (CNN) to extract 

ECG’s multi-scale local morphological (spatial) features, 

The generated local spatial features were then processed 

by the following two bidirectional long short-term 

memory (LSTM) layers, and the output sequences of the 

LSTM layers were then weighted by an attention module 

and processed by a following dense network to complete 

AF detection. Finally, the sequential detection results 

were further processed to improve accuracy. To 

demonstrate its effectiveness, the proposed scheme was 

trained and tested on multiple ECG databases annotated 

by cardiologists. Episode and duration accuracies were 

calculated according to the performance evaluation 

method of atrial fibrillation detection defined in the EC57 

standard [1]. An episode F1 score of 85.7% and a 

duration F1 score of 95.5% were achieved on the 

independent testing dataset. 

 

 

1. Introduction 

Atrial fibrillation (AF) is a common cardiac arrhythmia 

with a prevalence of 2% in the adult population [2], and is 

considered to be associated with ischemic strokes, heart 

failure and many other serious complications [3]. 

Obviously, detection of AF is crucial for early treatment. 

As a no-invasive method, electrocardiography (ECG) is 

widely applied in AF detection. In practice, AF detection 

is done by detecting the absence of P wave or the 

presence of atrial fibrillation waves (f-waves) and the 

irregular variability of RR intervals in the ECG trace. 

However, significant feature engineering efforts are 

always needed to generate handcraft features or empirical 

thresholds due to the environment interferences, low 

amplitudes of the P waves and the intra-patient 

differences. Recently, deep learning models have been 

popularly applied for AF detection, including 

convolutional network (CNN), long short-term memory 

network (LSTM). Besides, attention mechanism, which is 

effective in nature language processing (NLP) has also 

been introduced. For example, a 34-layer CNN with 

residual network architecture was proposed for detection 

of 14 cardiac arrhythmias including AF [4], but only deep 

residual CNN module was utilized in this model, and thus 

temporal relationships between different parts of each 

input ECG segment was not utilized. Another model 

composed of CNN module, two LSTM layers and 

attention module was reported to classify 8 types of 

arrhythmias and sinus rhythm, and an average F1-score of 

81.2% was achieved [5], but in this model, the CNN 

module was similar to VGGNet with only 13 CNN layers 

and the LSTM layers were unidirectional, and thus could 

only extract temporal features from forward direction. In 

[6], an attention based deep learning scheme for detection 

of paroxysmal AF episodes was proposed. In the scheme 

of [6], non-overlapping 30-second windows split from 

each 10-minute ECG data were sequentially processed by 

the wavelet transform to generate their spectrograms, and 

by a CNN to further extract features from the 

spectrograms. The features extracted by the CNN were 

sequentially fed into a bidirectional recurrent neural 

network (BRNN), whose output results were weighted by 

a soft attention mechanism to generate the deep learning 

features for each 10-minute ECG data. Finally, the deep 

learning features were concatenated with other handcraft 

features and processed by a softmax regression layer to 

get the AF detection result. One disadvantage of the 

scheme in [6] was that it needed too long ECG data to 

analysis, besides, both wavelets transform and feature 

engineering were needed. 

In this article, an end-to-end deep learning scheme for 

AF detection was proposed. The proposed scheme 

composed of a 20-layer residual CNN to automatically 

extract spatial features, and a following bidirectional 

LSTM layers to extract temporal features from both 

forward and backward directions. The features extracted 

by the residual CNN and the LSTM were concatenated 

together at every time step to generate spatial-temporal 

features, which were weighted by an attention module to 

get the final deep learning feature, and the feature were 

fed into a softmax regression layer to complete the AF 

detection. The proposed scheme only needed 30 seconds 

ECG data without any handcraft features for every AF 

detection, but it could also be applied for continuous ECG 
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analysis due to the following simple post-processing 

module. The scheme was trained on multi-lead 30-second 

ECG segments, but evaluated on the long-time records 

from a testing dataset. 

 

2. Method 

An overview of the proposed scheme for AF detection 

was illustrated in Figure 1, and the continuous ECG data 

was processed by the following stages. 

 

 
Figure 1. Proposed scheme for atrial fibrillation detection 

 

2.1. Data pre-processing 

Multi-lead continuous ECG data was sampled at 

250Hz, and filtered by IIR filters with a bandwidth of 0.5-

40 Hz. Then the continuous ECG data was sliced into 30-

second ECG segments with a step of 5 seconds, and 

standardized segment-wise, so that each segment had a 

mean of zero and a standard deviation of one. 

 

2.2. Local spatial features extraction 

Constructed by 20 CNN layers with shortcuts, the 

residual network module was developed to automatically 

extract spatial features from each 30-second ECG data 

segment. Residual network was chosen for its ability to 

generate complex features with deep CNN layers while 

avoiding vanishing or exploding of gradients. All of the 

referred 20 CNN layers had a kernel size of 5 with a 

stride step of 3 or a kernel size of 3 with a stride step of 1, 

and were initialized by ‘He-Initializer’ method [7] and 

padded with the padding strategy of ‘same’. All pooling 

size and stride step were 3. After processing by the 

residual network module, the sequence size was reduced 

by 243 times. Batch normalization (BN) layers and 

dropout layers with a rate of 0.2 were used to avoid over 

fitting. Further details were illustrated in Figure 2. 

 

 
Figure 2.  Details of residual network module 

 

2.3. Temporal features extraction 

    The LSTM module consisted of 2 sequential 

bidirectional LSTM layers, in which the numbers of the 

hidden units and output units were both 32. This module 

was used to extract the temporal information from both 

forward and backward directions. 
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2.4. Combining spatial and temporal 

features 

For every time-step of the LSTM module, the input 

and output were simply concatenated together along the 

feature dimension, and thus the sequences consisting of 

spatial features extracted by residual CNN and temporal 

features extracted by bidirectional LSTM layers were 

generated. 

 

2.5. Calculation of the representative 

feature vectors 

The attention module, as illustrated in Figure 3, was 

mainly constructed by 2 sequential dense layers each 

followed by a nonlinear activation function. Through the 

attention module, the sequences of spatial-temporal 

features were weighted to form a representative feature 

vector for each ECG segment. 

 

 
Figure 3 Details of attention module 

 

2.6. Classification 

The classifier module was constructed by a dense 

network followed by the softmax to calculate the 

likelihood of the AF for each 30-second ECG data 

segment. 

 

2.7. Post-processing 

As in our proposed scheme, segments extracted from 

continuous ECG data were processed sequentially and 

separately, and thus the AF detection results of all 

segments were theoretically independent with each other. 

But in practice, the AF detections may not be stably 

correct during long AF/Non-AF episodes and isolating 

false negative and positive AF detections may occur due 

to environment interferences. In order to further improve 

the accuracy, the post-processing part was needed. 

In the post-processing part, AF episodes shorted than 

30 seconds were ignored, and AF episodes separated by 

intervals shorter than 5 seconds were merged to a single 

one 

 

3. Results 

3.1. Database and pre-processing 

Four expert annotated databases including MIT-BIH 

Arrhythmia Database (MIT_BIH), MIT-BIH Atrial 

Fibrillation Database (MIT-AF), Long-term AF Database 

(LTAF) and AHA Database (AHA) were used to train 

and test the model in the proposed scheme.  

Since AHA database only contains 80 records (each 

with a duration of 3 hours) of 8 arrhythmia types 

excluding AF, so it was used as database of negative 

instances. Besides, 4 paced records from MIT-BIH were 

excluded. A brief summary of the used records was listed 

in Table 1. 

All the used records were resampled at the frequency 

of 250Hz and filtered by 1-order low-pass Butterworth 

filter with a cut-off frequency of 40 Hz, 1-order high-pass 

Butterworth filter with a cut-off frequency of 0.5 Hz and 

a notch filter of 50Hz. 

 
Table 1. Summary of used records 

 
 Rhythm MIT-BIH MIT-AF LTAF AHA 

Records AF 7 23 83 0 
Non-AF 37 0 1 80 

Hours AF 2.2 93.4 1030.9 0 

Non-AF 19.9 140.9 929.7 46.7 

 

3.2.  Experimental setup 

Records of each database were divided into training 

(2/3 records) and testing part (1/3 records), then the four 

training and testing parts were separately mixed to 

construct two datasets named as DB1 for training and 

DB2 for testing. 30-second segments were extracted with 

a stride of 5 seconds from the records of DB1 to construct 

the final training dataset. Each extracted segment was 

labeled as AF only if it contained AF for more than 15 

seconds, and otherwise Non-AF. Since the lengths of 

records varied from 30 minutes to more than 24 hours, in 

order to balance the segments extracted from each record, 

data augmentation was performed. Meanwhile, DB2 was 

used as an independent testing database of continuous 

ECG data.  

   The weights of CNN and dense were initialized using 

the ‘He initializer’ while the LSTM cells were initialized 

with orthogonal initializer. Cross entropy loss and Adam 
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optimizer with default parameters was applied. The initial 

learning rate was 0.001 and would be multiplied by a 

factor of 0.1 every 10 epochs while the maximum training 

epoch was set as 100.  

 

3.3  Evaluation results 

The performance of the proposed scheme for AF 

detection was evaluated on the testing dataset DB2 

according to EC57 standard [1].  

Firstly, annotations for each record were derived from 

the sequential results of AF detection, and then were 

compared with reference annotations to calculate three 

metrics of precision, recall and F1-score both in terms of 

episode and duration. When recall was calculated, 

reference AF episodes or durations overlapped with 

algorithm ones were counted as true positives (TP) while 

others were counted as false negatives (FN), and the 

recall was the ratio of true positives to the sum of true 

positives and false negatives (TP/ (TP+ FN)). When 

precision was calculated, algorithm AF episodes or 

duration overlapped with reference ones were counted as 

true positives (TP) while others were counted as false 

positives (FP), and the result was the ratio of true 

positives to the sum of true and false positives (TP/ (TP+ 

FP)). The F1-score was calculated as the harmonic 

average of recall and precision. The final evaluation 

results were listed in Table 2. 

Although the proposed scheme achieved a promising 

performance on the whole testing datasets, there were still 

AF misdetection cases. Some misdetection cases were 

probably due to questionable annotations. For example, as 

illustrated in Figure 4 (around 63164 second of the 

record’10.dat’, LTAF), considering the presence of little 

but regular P waves, the scheme possibly made a true 

negative AF detection. 

Besides, the proposed scheme didn’t work well on 

several other ECG segments. For example, as illustrated 

in Figure 5 (around 2159 second of the record ’23.dat’, 

LTAF), a Non-AF was incorrectly detected as AF. This 

misdetection was probably due to the artifacts similar to f 

waves, though the RR intervals were almost regular. This 

false positive AF detection could be improved by 

incorporating extra artifacts handling strategies. 

 
Table 2. Performance of AF detection on records of testing 

databases 

 
 Precision Recall F1-score 

Episode 79.9% 92.5% 85.7% 

Duration 94.9% 96.0% 95.5% 

  

 

 
Figure 4 Segment annotated as AF but detected as non-AF 

 

 

Figure 5 Segment annotated as no-AF but detected as AF 

 

4. Conclusion 

An end-to-end deep learning scheme composed of a 

residual network module, a LSTM module, an attention 

module and a post-processing module was proposed for 

AF detection by continuous ECG analysis, and the 

proposed scheme achieved an episode F1 score of 85.7% 

and a duration F1 score of 95.5% on the testing dataset of 

continuous ECG records. The experiment results showed 

that the proposed scheme could be a valuable method for 

AF detection. 
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