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Abstract 

In-silico cardiac patches with a non-conductive fibrotic 

areas were used to investigate the occurrence and 

characteristics of rotors described by phase singularities 

(PSs). A rotor was generated in a virtual tissue patch 

represented by a Courtemanche model adapted to mimic 

AF conditions. Non-conductive fibrotic elements were 

incorporated around the center of the patch (densities of 
20%, 30%, and 40%). Electrograms (EGMs) were 

calculated and their phase was determined using Hilbert 

transform. PSs were detected and PS density maps 

(PSDMs) were generated. Six attributes were used to 

investigate bipolar EGMs obtained from the original 

signals: sample entropy (SampEn), determinism (DET), 

peak-to-peak (PP), wave similarity (WS), organization 

index (OI), and cycle length (CL). 77.1% of the PSs 

occurred inside the fibrotic region – with a higher density 

in the border zone – for 20% density; 99.8% for 30%; 

99.7% for 40%. SampEn was significantly higher in 
regions with PSDM≥5, while DET, PP, and WS were 

significantly lower (P<0.0001). PSs tended to meander 

outside the fibrotic area for lower fibrotic density. Bipolar 

EGM attributes offer a complementary way for rotor 

detection in the presence of non-conductive fibrosis. 

 

 

1. Introduction 

Multiple mechanisms are believed to participate in the 

perpetuation of atrial fibrillation (AF) – the most common 

heart rhythm disorder seen in clinical practice – which 

poses challenges for the correct identification of targets for 

AF ablation therapy [1]. Recent works have suggested that 

areas with reentrant activity (i.e., rotors) represent 

important sites for ablation [2], and recent investigations 

have linked the occurrence of such rotors to cardiac regions 

with fibrotic tissue [3].  

Fibrosis represents a complex structure comprised of 

different factors – such as collagen deposition, 

inflammatory cytokines, proteins, among others – that alter 

the electrophysiology of the cardiac tissue. For instance, 

heterogeneities induced by the presence of fibrosis alter 

conduction patterns in the cardiac tissue, creating regions 

of slow and anisotropic conduction [4]. Such delayed 

activation might favor the occurrence of re-entrant activity, 

which in turn participates in the perpetuation of the 

arrhythmia [5]. The relationship between rotors and 

fibrosis – as well as rotor detection related to fibrosis – 
remains controversial [4]. Additionally, methods for 

automated rotor detection during cardiac 

electrophysiologic studies rely mostly on unipolar 

measurements, whereas the majority of clinical centers 

perform AF ablation guided by attributes extracted from 

bipolar electrograms (EGMs) [2]. Computational 

modeling may represent a valuable tool to investigate these 

aspects, in which the ground truth for remodeled cardiac 

tissue is known [6].  

In the present work, in-silico cardiac patches with non-

conductive fibrotic area were used to investigate the 

occurrence and characteristics of rotors described by phase 
singularities (PSs). Bipolar EGM attributes were used to 

characterize the influence of PSs in the cardiac tissue. 

 

2. Methods 

2.1. Non-conductive fibrotic tissue in a 

virtual cardiac patch 

A stable rotational source was generated by cross field 

stimulus protocol [7] in an isotropic virtual tissue patch 
measuring 30 mm x 30 mm x 2 mm, with a spatial 

resolution of 100 μm (0.1 mm x 0.1 mm x 0.1 mm), as 

previously described in [4].  

Membrane kinetics were represented by the 

Courtemanche et al. model [8], adapted to mimic persAF 

conditions [9]. The conductivity of the non-fibrotic region  

Computing in Cardiology 2020; Vol 47 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2020.121



 
Figure 1. Illustration of a single time frame of the processing steps for analyzing the relationship between non-conductive 

fibrosis and PS occurrence using bipolar EGMs attributes for 20% of fibrotic density. A. The original patch (non-conductive 

fibrotic tissue highlighted in black). B. A time frame showing the unipolar voltage during an induced fibrillatory event. The 

PS at the time frame is highlighted with the white sphere and the location of the illustrated EGM is highlighted with the 

white arrow. C. The corresponding phase map. D. The PS density map for the entire 8 s episode. E. and F. The resulting 

bipolar voltage maps of the same time frame with the original and filtered bipolar EGMs, respectively. G. One of the 

attributes extracted from the filtered bipolar EGMs (SampEn). 

 
was adapted to yield a plane wave conduction velocity of 

0.22 m/s. Regional fibrosis was incorporated into the 

model within an area of 10 mm x 10 mm x 2 mm at the 

center of the patch and was modelled by setting the 

conductivity for each fibrotic element to zero (Figure 1A). 

The volume fraction of these fibrotic elements was set to 

20%, 30% and 40% (higher densities induce full 

conduction block). Uniform distribution of transmural 100 

μm x 100 μm non-conductive elements within the fibrotic 

area was considered. The size of non-conductive elements 

was adapted to approximate histological observations on 

collagen septa in aged human atria [10]. Excitation 
propagation was simulated using the cardiac 

electrophysiology solver acCELLerate [11]. Eight seconds 

of extracellular potentials were sampled at 1 kHz and 

calculated in direct contact with the endocardial surface, 

with an inter-electrode distance of 0.5 mm, resulting in a 

2D mesh with 60 x 60 unipolar EGMs (Figure 1B). 

 

2.1. Signal processing 

The phase of the unipolar EGMs was determined using 

sinusoidal wavelet reconstruction followed by Hilbert 

transform [12]. PSs were detected using the topological 

charge method (Figure 1C) [13] and PS density maps 

(PSDMs) were generated (Figure 1D) from 8 seconds of 

electrogram data. 

Bipolar EGMs were obtained from the unipolar signals 

(Figure 1E) and filtered following the clinical 

recommendations (30-300 Hz, Figure 1F). Attributes were 

extracted from the filtered bipolar EGMs (Figure 1G), as 

described in the following section. 

 

2.2. Attributes for bipolar EGMs 

A set of attributes, previously proposed as AF markers, 

were selected to quantitatively characterize the filtered 

bipolar EGMs collected in regions with vs. without PSs:  

1) Sample entropy (SampEn) provides a direct estimation 

of signal amplitude distribution – signal complexity [14].  

2) Determinism (DET). Based on recurrence quantification 

analysis, it characterizes phase transitions and underlying 

nonlinear phenomena. It was shown to be effective in 

discriminating turbulent behavior in AF EGMs [15]. 
3) Organization index (OI) is a measure of signal spectrum 

dispersion, bounded between 0 and 1, with smaller values 

indicating more fractionated EGMs [14]. 

4) Wave similarity (WS) is a measure of the repetitiveness 

of local activation wave morphology in AEGs, which is 

reflective of the organization of the underlying conduction 
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patterns [16]. 

5) Peak-to-peak (PP) amplitude voltage is extracted from 

local activation waveforms and quantifies the AEG voltage 

amplitude. It might help to identify low voltage zones, 

which are believed to correlate with the fibrosis presence 
[14]. 

6) Cycle length (CL) represents the rate of activation of the 

underlying atrial tissue estimated in the time-domain [19]. 

7) Interval confidence level (ICL), average complex 

interval (ACI), and shortest complex interval (SCI) are the 

clinical attributes calculated by the CARTO mapping 

system to measure AEG fractionation [14].  

 

2.3. Statistical analysis 

All continuous non-normally distributed variables are 

expressed as median and interquartile interval. 

Nonparametric unpaired multiple data were analyzed using 

the Kruskal-Wallis test with Dunn's correction. Receiver 

operating characteristic (ROC) curves were created 

considering the density of PSs (PSDM≥5) as the reference 

for classification and the EGM attributes as predictors. The 

area under the ROC (AUROC) curves were calculated to 

assess the quality of the discriminators. P-values < 0.05 
were considered statistically significant. 

 

3. Results 

PSs were more concentrated inside the fibrotic region at 

higher fibrosis densities: 77.1% of the PSs occurred inside 

the fibrotic region in the patch with 20% fibrotic density 

(Figure 1D), 99.8% in the patch with 30% density, and 
99.7% in the one with 40% density. In all cases PSs 

occurred more often at the border zone of fibrotic regions. 

The PSs tended to meander less at increasing fibrotic 

density: PS trajectories covered 64% of the fibrotic region 

in the patch with 20% fibrotic density, 35% for 30% 

density, and 28% for 40% density. 

The presence of PSs induced significant changes in 

EGM amplitude, dynamics, and morphology, as 

highlighted by the EGM attributes in Figure 2. SampEn 

was significantly higher for EGMs collected in regions 

with PSDM≥5 (Figure 1H), while DET, PP, and WS were 
significantly lower (P<0.0001). OI was significantly lower 

in PS regions for 30% and 40% densities (P<0.0001), while 

there were no significant differences between regions with 

and without PSs in terms of CL. The clinical attributes 

calculated by CARTO showed significant differences 

(P<0.0001) between regions with and without PSs for 20% 

and 30% fibrotic densities. 

The AUROC curves highlighted the quality of each 

attribute as discriminator for classifying regions with 

PSDM≥5 (Table 1). SampEn, DET, WS, and PP were 

accurate discriminators, while OI, CL, and the clinical 

attributes (ICL, ACI and SCI) were not as effective. 

 

 
Figure 2. EGM attributes calculated in regions with (grey) 

and without (black) PSs in patches with different fibrotic 

densities (20%, 30%, and 40%). **** p<0.0001. 

 

Table 1. The AUROC curve for the EGM attributes when 

discriminating regions with vs. without PSs in different 

fibrotic density. The highest AUROC curves for each 
density are highlighted. 

 

Attributes 
Fibrotic density 

20% 30% 40% 

SampEn 0.80 0.92 0.72 

DET 0.71 0.87 0.81 

OI 0.55 0.75 0.77 
WS 0.81 0.89 0.94 

CL 0.52 0.62 0.67 

PP 0.71 0.82 0.89 

ICL 0.64 0.64 0.53 

ACI 0.69 0.73 0.56 

SCI 0.69 0.73 0.56 

 

4. Discussion and conclusions 

Our results suggest that attributes extracted from filtered 

bipolar EGMs – broadly used to characterize the atrial 

substrate in electrophysiologic studies – are effective in 
detecting regions with rotors in the presence of non-

conductive fibrosis. Additionally, our results show that 

complementary attributes – such as SampEn and WS – 

should be preferred to characterize AF rotors over clinical 

Page 3



attributes calculated by electroanatomic commercial 

systems – such as CARTO. More importantly, while CL is 

frequently used as a measure for AF complexity, it showed 

poor performance in characterizing regions with rotors. 

These results might partially explain the methodological 
heterogeneities in rotor-guided ablation and the subsequent 

inconsistencies in ablation outcomes. 

Recent works have shown the potential benefits of 

multiparametric analysis for a more thorough 

characterization of the atrial substrate using multiple EGM 

attributes [14]. The combination of the proposed attributes 

– but not limited to them – in a classification model might 

improve target identification for AF ablation using filtered 

bipolar EGMs. 
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