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Abstract

In participation of the PhysioNet/Computing in Cardiol-
ogy Challenge 2020, we developed a novel computational
approach for efficiently identifying cardiac abnormalities
from 12-lead electrocardiogram (ECG) data. The devel-
oped methodology is composed of three processes: se-
lecting representation, generating features, and predicting
outcomes. We proposed a cache-inspired method to select
a 12-lead ECG heartbeat representation. Moreover, we de-
vised a physiologically interpretable feature generator for
segmented 12-lead ECG signals. For multi-label arrhyth-
mia classification, we innovated an efficient arrhythmia
outcome prediction procedure that is adaptable to ECG
data of variant lengths. Our team, JuJuRock, received
a score of 0.402 using 5-fold cross-validation on the full
training data and a score of 0.244 on the final full test
data. Team JuJuRock ranked 16" out of the 41 teams that
participated in this year’s Challenge.

1. Introduction

Arrhythmia is a substantial cardiovascular disease since
it has been reported to correlate with high prevalence
and associated mortality [|1]. Different arrhythmia types
have different mechanisms and require the appropriate in-
terventions for successful treatments. The electrocardio-
gram (ECG) is an essential tool for screening and diag-
nosing cardiac electrical abnormalities [2]. Online cardiac
activity ECG monitoring and early diagnosis of arrhyth-
mia are critical in clinical practice. To reduce the time-
consuming manual arrhythmia labeling, several computer-
aided-diagnosis (CAD) tools have been proposed [3,4].

However, a majority of these CAD tools have not been
verified on multiple datasets. Another drawback of these
CAD models is their power in diagnosis - they focus on
single-label diagnosis instead of multi-label cardiac abnor-
malities identification.

To develop an automated program that addresses
the aforementioned issues, we participate the Phys-
ioNet/Computing in Cardiology Challenge 2020, which
focused on automated, open-source approaches for clas-
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sifying multi-label cardiac abnormalities from 12-lead
ECGs [3]. Our best entry in the Challenge applied boosting
classifier to identify the cardiac abnormalities. Moreover,
we deliver the computational approach that contributes to:

o Generating 12-lead ECG heartbeat representation;
« Producing physiologically reasonable feature maps;
« Making efficient cardiac abnormalities identification.

2. Methods

We formulate the multi-label arrhythmia classification
problem into diagnosing each arrhythmia class with a bi-
nary classifier. The binary classifier’s training process
is illustrated in Figure First, we select the appropri-
ate datasets to include in the training. Next, we process
and segment a representative heartbeat from each patient.
Subsequently, we generate the amplitude and timing fea-
ture maps from each heartbeat segment for classifier train-
ing. Following the feature generation, we train the binary
classifiers with different deep learning (DL) and machine
learning (ML) models. Once the classifiers are trained, we
experiment with these models and optimize the parameters
in our devised arrhythmia decision algorithm.

2.1. Dataset Selection

Six datasets are generously provided as the training can-
didate, and four out of six were chosen to be included in
our model training. The four selected datasets are Georgia,
CPSC, CPSC_2, and PTB-XL 12-Lead ECG databases.
Such dataset selection is made based on three reasons: 1)
sample size, these four datasets cover the majority of the
cases and could possibly represent the data distribution in
the testing set; 2) data length, variant data length, from
five seconds to several minutes, are lying within the chosen
datasets; 3) signal quality, the signal-to-noise ratio (SNR)
is relatively high in the selected four datasets compared to
the two unselected ones. Furthermore, given the 27 evalu-
ated classes in the challenge, only the data from the patient
diagnosed as at least one of the 27 classes is sifted.
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Figure 1. Flowchart of training the proposed multi-label
arrhythmia classifier.

2.2. Data Segmentation

We developed a heartbeat segmentation algorithm to
transform each patient’s raw ECG signal into one represen-
tative heartbeat data. Such algorithm consists of four steps:
data cleaning, R-peak detection, heartbeat segmentation,
and representation selection. In Figure [I] we demonstrate
the raw and the processed 12-Lead ECG data.

First, we clean the raw ECG data with a Butterworth
low-pass filter and a smoothing function channel-wisely.
The Butterworth filter has an order of 12 and 50Hz cut-
off frequency. The smoothing function adopts the moving
average strategy with 10ms window span.

In the second step, we detect the R-peaks in the cleaned
ECG data. All the R-peaks detection is carried out on Lead
Il data. For the majority of patient samples, we run the
famous Pan-Tompkins algorithm to identify the R-peaks;
for the few corner cases, we take on the heartbeat detection
method targeted at noisy physiological signal as applied in
Hsu er al.’s work [6] to resolve the issue.

Once we finish labeling the R-peaks of one patient, we
chop down every ECG heartbeat into 1-second long frame
and concatenate the frames into a tensor. Every 1-second
frame has the channel-wise R-peak located at the center.
Supposed that N number of heartbeats is considered, then
the tensor will have the dimension of 12 x fg x NN, where
fs symbolizes the ECG sampling rate. To be more specific,
we do not consider the head and the tail of the heartbeats
into the tensor. Because the SNR is typically low at the
endpoints of the signal and the duration of the ECG heart-
beat are likely to be less than one second.

At the last step, we employ the clustering method and
similarity metric to select the representative one-second
ECG heartbeat. For each patient, we congregate the ECG
frames into at most three groups and recognize the frame
lying within the largest group as the representative.

The clustering approach is inspired by the cache updated
rule. At the beginning, we construct a cache of three en-
tries, and each entry contains five blocks. Next, we follow
the least-recently-used rule to update our cache, which is
a frequently utilized technique in computer architecture.
We assign a newly visited ECG frame to an existing cache
block if the ECG frame has sufficiently high similarity with
the frames in the entry, or if there is an empty entry to be
filled with; otherwise, we move on to the next ECG frame.
Eventually, we select the block data that stores the most re-
cent ECG frame in the largest group as the representation.

As for the similarity metric, we borrow the structural
similarity index (SSIM) defined in Wang et al.’s study [7].
The SSIM expression is

(2uapy + 1) (202 +c2)
(u + 15 + c1)(0F +0f +c2)’

SSIM (x,y) = (D

where ¢; = (0.01L)?2, and ¢, = (0.03L)2. Inputs z,y are
the two ECG frames; jiz, 1, are the averages of the two
input frames; o, oy, and o, are the variances of frame
x, frame y, and the covariance of the two frames z,y. L is
the range of the ECG voltage values. In this work, frames
z and y represent the two ECG frames to be compared
with, and we empirically set the SSIM threshold as 0.3 to
consider two ECG frames belonging to the same group.

2.3. Feature Map Generation

We invented a novel physiology-inspired feature gener-
ator that is able to efficiently produce the feature maps of
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an arbitrary ECG frame. We incorporate the knowledge
of saliency into our feature generation model to quantify
the P-wave, QRS-complex, and T-wave relevant geometry
on two feature maps. One feature map renders the am-
plitude features, while the other characterizes the timing
information. We present our amplitude and timing feature
generation algorithms [I[2]] as follows:

Algorithm 1 Amplitude Feature Generation

Input: 1-second 12-Lead ECG Data, K
Output: Amplitude Feature Map Amp_M ap

Initialize Amp_M ap as a matrix of size 12 x K
forch =1— 12do
x < ECG data of channel ch
P «+ ‘fi—f = 0 // valleys and peaks in the data
@ < array of size |P| — 1
fori=1—|P|—1 do
Qlil = Pli + 1] - PJi]
end for
M Q)
I < Indices of top K largest values in M
/I I is in non-decreasing order
Amp_Maplch,:] + Q[I]
end for

Algorithm 2 Timing Feature Generation
Input: 1-second 12-Lead ECG Data, f;, K
Output: Timing Feature Map Time_M ap

Initialize Time_M ap as a matrix of size 12 x 2K
forch=1— 12do
Same procedure as Algorithm [Tuntil obtaining I
fori=1—-K—-1 do
Time_Mapl[ch,2i — 1] = I[i + 1] — I[i]
Time_Maplch, 2i] = k — I[i]
I < k <I[i+ 1],k < argmin P — I[i]
end for
Time_Map|ch,2K — 1] = f; — I[K]
Time_Map|ch,2K] = k — I[K]
K] <k < fs, k < argmin fs — I[i]
end for
Time_Map < Time_Map/ f

Both amplitude and timing generation algorithms take the
1-second 12-Lead ECG and the assumed fiducial point
number K as inputs, and output the feature maps of size
12 x K and 12 x 2K, respectively. The algorithms com-
pute the features of each channel independently, and then
project them onto the output feature maps. For the am-
plitude map, the salient magnitudes are assessed; for the
timing map, the durations between the salient points are
taken into account. Under the assumption of existing P, Q,

R, S, and T waves, we set K = 10 and exhibit an example
in Figure[T]

24. Classifier Training

We treat solving the multi-label classification problem
as training binary classifiers for each evaluated class. Our
heuristics are that each arrhythmia type bears its own
unique waveform and is reflected in our generated am-
plitude or timing maps. Based on the reasoning, we im-
plement the following two experiments to train the binary
classifiers for each evaluated class.

1. Training Models: Basic DL and ML models are the
candidates. Regarding DL strategy, convolutional neu-
ral network (CNN) and recurrent neural network (RNN)
models are nominated. Referring to CNN, we borrow
the AlexNet architecture with the input size being an im-
age of 12 rows. As for RNN, we employ the long-short
term memory units with inputs having a dimension of 12.
Concerning ML methods, the models examined include
support vector machine, logistic regression, boosting, k-
nearest neighbor, decision tree, and random forest.

2. Training Features: Three experiments are carried out
for feature selection. One includes only the amplitude fea-
ture in the model training. Another takes only the timing
feature into consideration. To be more specific, we utilize
not only the timing map but also the averaged heart rate
and heart rate variation in this experiment. The other lever-
ages both amplitude and timing feature maps for training.

To determine the best model for each evaluated class,
we run the cross-validation tests on all the designed ex-
periments. We split the data into 80% for training and
20% for testing. In addition, to address the issue of under-
represented classes, or named the imbalanced classes, we
randomly pick the samples from the class that have larger
sample size to match the size of the smaller group.

2.5. Arrhythmia Decision

We proposed a strategy to diagnose the arrhythmias of
a patient that is adaptable to the ECG data length. If the
given data length is shorter than 20s, then we construct
one representative ECG following the procedure in[2.2] [2.3]
and determine the existence of each arrhythmia type by
running through the best trained binary classifiers of each
class.

For data length exceeding 20s, we randomly select [V
number of data segments to quantify /N representations.
Given the original data length L in the unit of seconds, the
number N is derived from the proposed expression:

N (L] if & <100,
100 if L >100.
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For N representations, we compute the arrhythmia labels
across all evaluated classes, and consider the scores of the
classifier as the indicator. For each arrhythmia type, if the
maximum score of these N representations is greater than
0.1, then we optimistically assume that the patient has the
corresponding arrhythmia type diagnosed.

3. Results

We elaborate the outcomes of model training and fea-
ture selection experiments in [3.]and display the scores of
cross-validation and official tests in[3.21

3.1. Training Experiments

From the results of our cross-validation tests, boosting
classifiers have the most robust and top-notch performance
for all the evaluated classes. The second place goes to the
random forest method, whereas deep learning models are
inclined to overfitting.

With respect to the feature selection experiments,
we discovered that the timing-deviated arrhythmia types
showcase the best performance with solely the timing fea-
tures. Also, we found that the abnormal waveform-based
arrhythmias favor the amplitude feature maps. Combining
amplitude and timing feature maps does not significantly
improve the performance of the classifiers.

3.2. Scores

Dataset Runtime (hour:minute:second)  Score
CPSC ~0:20:00 0.455
CPSC_2 ~0:30:00 0.402
Georgia ~1:00:00 0.456
PTB ~0:10:00 -2.589
PTB-XL ~ 1:30:00 0.173
St. Petersburg ~ 0:30:00 0.340
Official 1:55:00 0.406

Table 1. Performance of the proposed model.

We exhibit the cross-validation results of each dataset
and the current official score in Table|l} Judging from the
runtime, we show that our proposed model is competitive
(compared to other challengers’ models). Assessing the
scores, we believe that the proposed model has success-
fully learned the features since the weighting scores of the
cross-validation tests is similar to the current official score.

4. Discussion and Conclusions

Our team has delivered an interpretable multi-label ar-
rhythmia classifier. The classifier is built of our devised

12-Lead ECG heartbeat segmentation and feature gener-
ation algorithms. We demonstrate that different types of
arrhythmias favor the corresponding features, either the
amplitude or the timing maps. For future work, we aim
at optimizing the arrhythmia prediction and representation
learning algorithms.
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