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Abstract 

Most traditional studies regarding arrhythmia detection 

using electrocardiogram (ECG) have proposed general 

methods applicable to various patients. Because patients 

have their own unique ECG patterns, abnormalities 

undetected by general methods can be detected if a new 

arrhythmia detection method tailored to each patient is 
developed. Furthermore, the new method can effectively 

support doctors in their diagnosis if it can provide the basis 

for determining abnormalities. Herein, we propose an 

individualized ECG abnormality judgment method using 

an autoencoder and a convolutional neural network. This 

method allows the autoencoder to learn only normal 

waveforms that can be easily collected and obtains the 

characteristics of the individual's unique normal 

waveforms. Our method compares the features acquired 

from the ECG pattern to be analyzed with those of the 

normal waveform and determines whether they are normal 
or abnormal. In addition, we aim to construct a system that 

can demonstrate the basis for the judgment of whether a 

feature is normal or abnormal by showing the acquired 

features. 

 

 

1. Introduction 

In recent years, the need for automatic 

electrocardiogram (ECG) analysis to support physicians 

has increased. One of the approaches to achieve automatic 

ECG analysis is to use deep learning. This method is 

mainly based on supervised learning. Because this 

conventional method using supervised learning typically 

manages the data of multiple people for automatic analysis, 

its performance has become generic for many patients. 

ECG patterns vary by individual; therefore, an automatic 

analysis of ECGs tailored to individuals is expected. In 

addition, it is difficult to present the basis for judgments in 
automatic analysis. Conventional automatic ECG analysis 

is used to determine abnormal waveforms in short-time 

data, such as “1 second” or “1 beat” [1]. However, it can 

be difficult to analyze ECG patterns without observing 

their changes over time; as such, observations over a long 

time period are necessitated. Kiranyaz et al. proposed a 

patient-specific ECG classification based on supervised 

learning using a one-dimensional convolutional neural 

network (CNN) [2]. By learning a patient’s individual 

ECG pattern and the ECG pattern common to each patient, 

the system performs an automatic ECG analysis that is 

specific to the individual. However, this system requires 

labeled ECG data, including those of arrhythmias, to be 

prepared for each individual. Because it may be difficult to 
collect large numbers of abnormal ECG patterns from 

individuals, the method is impractical to all patients. Elzen 

et al. proposed a method of representing dynamic networks 

as trajectories in a feature space to understand the temporal 

variation of dynamic networks [3]. In this method, the 

network at each moment is reduced to a low dimension 

using principal component analysis (PCA) and other 

methods, and the low-dimensional quantity is plotted 

continuously over time to represent the time change. In this 

study, we combined this method with feature extraction 

using an autoencoder to represent long-term changes in 

ECG patterns as trajectories. Using this method, we aim to 
construct an automatic ECG analysis system that can 

consider abnormalities over time using an autoencoder and 

a CNN to learn only normal waveforms that can be 

collected easily. 

 

2. Method and material 

This chapter describes a system that uses Autoencoder 

and CNN to determine whether an ECG is arrhythmic or 

not. 

 

2.1. Acquisition of ECG features 

In our method, ECG patterns are learned using an 

autoencoder and a CNN is used to acquire the essential 
features of the ECG pattern. The essential features are 

vectors represented in far fewer dimensions than the 

dimensions of the ECG pattern and can accurately 

reconstruct the original ECG pattern. The autoencoder was 

used because of three reasons. The first reason is to render 

the ECG pattern robust to noise. It is important to remove 

noise as it can result in misdiagnoses. The second reason is 
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to visualize ECG features. By comparing the features of 

normal and abnormal waveforms in graphical form, we can 

obtain a basis for diagnosing the ECG pattern. Third, the 

autoencoder was trained with unsupervised learning. 

Without preparing abnormal ECG patterns, the system can 
be used by learning only normal waveforms that can be 

collected easily. 

 

2.1.1. Input and output data 

We used N-dimensional ECG waveform data as input 

and output. In the proposed method, we created input data 

by cropping out parts of the ECG pattern individually in an 
N-dimensional width with the sliding window, as shown in 

Figure 1.  

 

 
 
 
Figure 1. Input data creation method.  

 

Using this method, the variability of the ECG pattern over 

a certain long-term period can be determined. Only ECG 

patterns diagnosed as normal in advance were used as input 

data for learning. The learning data were categorized into 

training and validation data. To evaluate the proposed 

method, not only normal waveforms, but also abnormal 

waveforms were included in the test data. 

 

2.1.2. Network structure 

We used an autoencoder to reduce the dimensionality of 

the N-dimensional ECG waveform to T-dimensions and 

acquired the features. The network structure comprised six 

convolution layers, six deconvolution layers, three pooling 

layers, and three unpooling layers, as shown in Figure 2.  

 

 

□ Conv + PReLu       □ Max Pool 

□ Deconv + PReLu    □ Unpool         □Dense 

 

Figure 2. Network structure.  

 

2.2. ECG analysis 

    After training the model with the training data, the 

features of all the learning data were acquired from the 

middle layer. Our method compares the features acquired 

from the training data with those acquired from the 

validation and test data using the nearest neighbor method 

and determines a threshold value. Subsequently, it assesses 

whether the input ECG pattern is arrhythmic. 
 

2.2.1. Nearest neighbor method 

Our method maps the T-dimensional features acquired 

from the middle layer onto the feature space and compares 

the training data with the validation and test data. Figure 3 

shows the T-dimensional feature space. The Euclidean 

distances of the validation and test data to the closest 
training data were obtained and used as the measure of 

abnormality degree in the ECG pattern. Figure 4 shows the 

distances of all the validation and test data.   

 

 
 

Figure 3. ○: Training data. ×: Validation data. ■: Test 

data consisting of normal waveforms. ▲ : Test data 

comprising abnormal waveforms. Red, blue, and green 

lines indicate distances between respective data. 

 

 
 

Figure 4. Distance to all validation and test data 

 

2.2.2. Threshold 

We determined whether the N-dimensional ECG data 

are arrhythmic by verifying the distances of the test data 

acquired in Section 2.2.1. This set was obtained from the 

window sliding S times to the right (as shown in Figure 1) 
and is represented by S-dimensional data, where each 

element represents the abnormality degree described in 

Sliding window of width N 

Validation Test (normal) 
Test (abnormal) 
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Section 2.2.1. We performed the following two steps: 

 

1: If the distance is more than threshold A, then the data 

are regarded as potentially abnormal. 

2: Equation 1 shows the probability that the S-
dimensional data are arrhythmic. 

 

  ((Data judged to be abnormal by threshold A)/S).    (1) 

 

    If this probability is greater than or equal to threshold 

B, then the S-dimensional data are regarded a 

waveform reflecting arrhythmia. 

These thresholds were calculated using the validation 

data. 

 

We used the top 10% of distances in all validation data as 

threshold A and the top 0.5% of the probability determined 
in Step 2 for all validation data as threshold B. We verified 

for arrhythmia by applying this threshold to the test data. 

     

2.3. Visualizing Features 

    We used PCA to dimensionally reduce the T-

dimensional features acquired using the proposed method 
to two-dimensional features. We mapped two-dimensional 

features onto a two-dimensional graph and compared the 

trajectory of a normal waveform with that of an abnormal 

waveform. Figure 5 shows an example of the mapping 

result. This allows us to visually identify abnormal areas.  

 
Figure 5. Feature paths of normal ECG for training (red), 

normal ECG for testing (black), and abnormal ECG for 

testing (blue). 

 

3. Experimental results 

This section describes the dataset to be used as ECG 

data and the method to evaluate the accuracy of the 

proposed method; additionally, the experimental results 

and discussions are provided. 

 

3.1. Dataset 

We used 30 ECG patterns from the MIT-BIH 

arrhythmia database [4]. This dataset contains 30-min 

ECG patterns of 48 individuals recorded using a Holter 

ECG recorder. Arrhythmias are classified as any heartbeat 

not in the S, V, F, or Q class, supraventricular ectopic beat, 

ventricular ectopic beat, fusion beat , and unknown beat 
based on the criteria recommended by the Association for 

the Advancement of Medical Instrumentation. These 

classes are attached to every R-wave. The sampling 

frequency was 360 Hz. Using the method described in 

Section 2.1.1, we acquired 30000 learning data from the 

beginning of each patient’s ECG pattern. We set N, the 

dimension of the input, to 500 such that the input contains 

multiple R waves. Portions that include arrhythmias were 

excluded from the learning data; there were 29000 training 

data points and 1000 validation data. The test data 

comprised 3,000 normal and abnormal waveforms. 

Because the amount of abnormalities differed by 
individual, the amount of test data differed by individual 

as well. We prepared S data for each label of anomaly 

using the method described in Section 2.1.1. This was 

prepared for the number of anomalies. 

 

3.2. Evaluation method 

    The results of the judgments obtained in the experiment 

were evaluated in terms of accuracy, precision, specificity, 

and F-values, which are typically used as accuracy 

indicators for binary classification. These indicators were 

obtained using Equations 2–6 with reference to Table 1. 

 

Table 1. Four numerical values determined by binary 

classification. 

 
 

             Accuracy = (TP+TN) / (TP+FP+TN+FN)        (2) 
 

                                 Recall = TP / (TP+FN)                  (3) 
 

                             Specificity = TN / (FP+TN)              (4) 
 

                             Precision = TP / (TP+FP)                  (5) 
 

           F = (2×Recall×Precision) / (Recall+Precision)   (6) 

 

3.3. Experimental results 

In our experiment, we defined the T and S dimensions 

as 20 and 150, respectively. We calculated the accuracy, 

precision, specificity, and F-values in a dataset of 30 

individuals, and the results of the average of the 30 

individuals are shown in Table 2.  
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Table 2. Results for accuracy, precision, specificity and F-

value. 

 
 

The precision results show that the normal waveform 

was not accurately detected. This was because the normal 

waveform was not accurately restored owing to 

misalignment or noise, which deformed the shape of the 

normal waveform. Meanwhile, we identified the 

possibility of detecting abnormal waveforms from the 

results of specificity.  

The feature visualization shows three patterns, as shown 

in Figures 6 –8. 

 
Figure 6. Pattern 1: Normal and abnormal trajectories are 

different. 

    
Figure 7. Pattern 2: Three vectors have the same trajectory. 

  
Figure 8. Pattern 3: Three vectors have different 

trajectories. 

The result of pattern 1 shows the difference between 

normal and abnormal waveforms, which may provide a 

basis for judgment. Meanwhile, cases occurred where the 

visualization failed, as shown in patterns 2 and 3. In 

addition to judgment inaccuracy, we considered that the 

visualization failed because the normal waveform was not 

accurately restored because of misalignment or noise, 

which deformed the shape of the normal waveform. 
 

4. Conclusion 

Herein, we focused on three conventional issues of 

automatic ECG analysis: (i) the conventional judgment of 

automatic classification is generic, (ii) the process of the 

analysis is a black box, and (iii) the arrhythmia caused by 

changes over time must be considered. We proposed an 
automatic ECG analysis system that can consider 

abnormality over time using an autoencoder and a CNN to 

learn only normal waveforms that can be easily collected. 

The experimental results demonstrated that the accuracy 

can be further improved and to the basis of the judgment 

can be analyzed by solving some problems. In addition, we 

successfully detected arrhythmias in people wearing 

pacemakers, otherwise undetectable using conventional 

generic determination methods. Two issues must be 

addressed in the future. The first is to reduce the baseline 

shift and noise. We attempted to solve this problem by 
introducing white noise. The second is to analyze a method 

for determining the threshold value. We plan to use outlier 

and anomaly detection methods to determine the threshold 

value and then confirm whether this determination method 

is medically valid. 
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