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Abstract

Accuracy of camera-based heart rate (H R.},) measure-
ment is often impaired by artifacts, which leads to erro-
neous H Ry, and reduced confidence in the measurement.

To avoid erroneous H R.,, we investigated six signal
quality indexes (SQIs) from the literature in terms of
their effect size and combined them to a novel SQI-filter.
All analyses were performed on the “Binghamton-Pitts-
burgh-RPI Multimodal Spontaneous Emotion Database”
(BP4D+) in three important color channels.

Signal-to-noise ratio, average maximum cross correla-
tion of consecutive segments, and relative difference of
spectral peaks were the most powerful SQIs. The SQI-filter
increased accuracies of all color channels. Largest im-
provements (up to 60 %) were achieved in the green chan-
nel resulting in 80 % accuracy. The overall highest accu-
racy of 84 % was reached in the hue channel. Motion-rich
videos benefited most from the developed SQI-filter:

The presented methodology helps to discard distorted
signals. This enables more reliable H R.;, data in further
applications and increases confidence in the measurement.

1. Introduction

Camera-based photoplethysmography (cbPPG) is a non-
contact optical technique for haemodynamic monitor-
ing [1]. The characteristic of contactlessness offers many
advantages, for example in terms of disinfection and pa-
tient comfort. On the other hand, cbPPG is particularly
susceptible to unsteady conditions. It is often reported that
signals are heavily distorted by patient motion or transient
illumination [1]. In these cases, vital parameter extraction
involves the risk of not analyzing physiological informa-
tion at all. For this reason the idea of examining the qual-
ity of the analyzed signal was developed and several signal
quality indexes (SQIs) have been introduced. The appli-
cation of SQIs is not limited to cbPPG. For example, Li
et al. [2] used SQIs on electrocardiograms (ECGs) and ar-
terial blood pressure signals for robust estimation of the
heart rate (HR) from multiple noisy channels. In [3], the
quality of ECG was rated into five groups with a support
vector machine and 13 SQIs. Quality of a HR estima-
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tion algorithm is often assessed as accuracy in compari-
son with a gold standard (e.g. HR from ECG). However,
if no gold standard is available, quality must be evaluated
directly from the signal. This work outlines six SQIs for
cbPPG signals derived from videos for camera-based heart
rate (H R.p) measurement. The ability of these SQIs to
predict the correctness of H R, from the signal itself is
then tested both statistically and as a classification prob-
lem. Since cbPPG is used with different color spaces, all
analyses are repeated for three important color channels.

2. Notation

A video V of N frames with P pixels per frame consists
of P signals x,(n) with n as discrete time and step size
An = 1/ f, where f, denotes the sampling frequency (or
frames per second). Let z(n) denote a signal deduced from
V. Figure 1 shows a cbPPG signal (average green intensity
of middle forehead) before and after filtering as well as the
amplitude spectra | X (k)| derived by fast Fourier transform
(FFT) F: X (k) = F{x(n)} with frequency step size Af.
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(a) Section of a 10s green chan-
nel cbPPG signal (fs = 25Hz)
in time domain. The raw signal
was detrended to oscillate around
zero intensity. Filtering was per-
formed with a 10** order But-
terworth band-pass ([0.5, 5] Hz).
Distolic minima and systolic max-
ima are marked in red.

(b) Detrended raw and filtered
cbPPG signal (N = 250) in fre-
quency domain (zero-padding ac-
tive, Af = 0.10Hz). Detrend-
ing suppressed low frequency sig-
nal components. The highest peak
in the amplitude spectrum, which
is associated with HR, and its first
harmonic are highlighted in red.

Figure 1: Exemplary cbPPG signal with average heart rate
of 1.75 Hz (105 bpm) in time and frequency domain.
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3. Signal Quality Indexes

In general, cbPPG signal quality can be analyzed in time
or frequency domain at video or signal level. This work
focuses on signal level SQIs, which are listed in Table 1.
However, it should be noted that signal level SQIs can be
applied to each pixel trace x,(n) of V' as for example Za-
unseder et al. [4] did with signal-to-noise ratio (SNR).

Table 1: Overview of considered signal quality indexes.

Domain Signal Quality Indexes

Time sSQI [5], psSQI [6], CCmSQI [7]
(by aCCmSQI and sCCmSQI)

Frequency snrSQI [8,9], rdspSQI [10]

3.1. Time Domain

Motion or transient illumination cause strong signal de-
flections. This leads to a high standard deviation of z(n),
which is therefore a suitable SQI [5]. With Z as the mean
of z(n), the so-called sSQI is defined as:

N
sSQI = ﬁ : ; |z(n) — z|2. (H

Trumpp et al. [6] used pulse strength psSQI (systolic-
diastolic amplitude difference) as a quality measure. Pulse
strength can be estimated beat-wise or from an average
beat signal b(n) as in eq. 2. Similar to sSQI, beat-wise
psSQI can be used to identify distorted signal segments as
they show high amplitude alterations. Poor blood volume
pulsation in the region of interest of V" leads to low average
psS QI because the optical characteristics vary less intense
and the signal is therefore less deflected. [6]

psSQI = B(nmam) - B(nmin) ()

If signal quality is high, cbPPG is quasi-periodic. Feng
et al. [7] used the maximum of a normalized cross corre-
lation function of consecutive signal segments (length 2,
shift limited to 0.5 s) to assess signal quality. The cross
correlation function C'Cy1,2(m) for two real signals 21 (n)
and x5 (n) of equal length N is defined as:

N—m—1

_J 2o r1(n+m)-xa(n) m >0,

CCyiz2(m) = { e o (em) iy
3)

The SQI CCmSQI is then derived after normalization as:
COMSQI = max CCriaa(m) @

\/CCI111(0) . ch212 (0) .

CCmSQI contains a value for each 2's segment and can
be summarized to aCCmSQI and sCCmSQI by calcu-
lating the mean and standard deviation respectively.

3.2. Frequency Domain

Frequency domain SQIs are calculated from |X (k).
They are affected by N and f; as these parameters deter-
mine spectral properties. The most popular SQI is SNR.
It was first applied to cbPPG by de Haan and Jeanne [8].
With the mask function II(k), signal power is taken from
a band around kg g and its first harmonic, which must ei-
ther be known from a reference or estimated from cbPPG.
Here, the implementation of Rasche et al. [9] is used:

bpm
S A0 bpm T(E) - | X (k)2

o (1 — TI(R)) - | X (k)2

1 Af-|kmg — k| <5bpm,
1 Af-|2-kgr — k[ <5bpm,
0 otherwise.

snrSQI =10-1g

with TI(k) =

®)

Finally, rdspSQ! is the relative difference of the high-

est (| X (k1)]) and second highest (| X (k2)|) peaks in the

amplitude spectrum (eq. 6) [10]. In a high quality signal

k1 = kggr and ks = kperm1, and their spectral ampli-

tudes differ clearly leading to high rdspSQ@I. In case of
artifacts, reduced rdspSQI can be observed [10].

rdspSQI = (|X (k)| — [X (k2))/[X (k)] (6)

4. Influence of Signal Quality Indexes on
Accuracy of Heart Rate Measurement

4.1. Data Material

The performance evaluation of the SQIs was based
on the investigation of camera-based HR accuracy ACC
presented in [11], which utilizes the “Binghamton-Pitts-
burgh-RPI Multimodal Spontaneous Emotion Database”
(BP4D+) [12]. In contrast to [11], the full data base
(140 subjects of all skin types, 10 videos under dif-
ferent emotional stimuli per subject, 1392 x 1040 pixels,
3 x 8bit RGB, fs = 25fps) was analyzed in this study.

4.2. Methods

Red, green, and blue channel cbPPG signals were ex-
tracted from the average intensity in the forehead region of
interest (in [11] called FHL) and transformed to HSV and
NTSC (also known as YIQ) color spaces. Only the green
channel G from RGB, the hue channel H from HSV, and
the chrominance channel Q from NTSC were processed
further, as they achieve the highest accuracy in their color
space [11]. The signals were split into 10s segments (5s
overlap) leading to a total of 8207 segments. Each seg-
ment was detrended and filtered with a 10*" order Butter-
worth band-pass filter (range [0.5, 5] Hz as in Figure la).
The filtered segments were zero-padded before applying a
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FFT. kg r was determined from the peak in the amplitude
spectrum (see Figure 1b). If H R, of a segment j was cor-
rect (absolute difference to HR from reference (HR,.f)
smaller than the greater of 5 bpm or 10 % of HR,.. ¢ [11]),
it was labeled w; = o, otherwise w; = e. The proportion
of w = o yields ACC.

All SQIs were computed for each segment from the
detrended and filtered signal as described. To generate
snrSQI independent of any reference, ky r from cbPPG
was used.

The labels w; were used to group the signal segments in
two classes (w = o, w = o). The SQIs of the two groups
were compared statistically with the software JASP 0.11.1
by Mann-Whitney U tests that return effect size as rank-
biserial correlation r, which may be interpreted as Pear-
son’s r. Furthermore, a classification problem was opened.
A decision tree was set up with 5-fold stratified cross-
validation using SQIs as predictors, w as response vari-
able, and error rate as objective function for optimization.
For evaluation, several parameters were calculated from
the confusion matrix of Table 3 as defined in Table 4. It
should be emphasized that the predictors do not analyze
HR, but shall indicate if a H R, can be trusted. The goal
is to avoid erroneous H R, by sorting out segments with
prediction w; = e, which is called SQI-filtering. Statisti-
cal analyses and w classification were performed for each
color channel.

4.3. Results

Results of statistical analyses are shown in Table 2.
Comparison of HR., to HR,.s led to ACC of 0.50 (G),
0.73 (H), and 0.70 (Q). All SQI effect sizes were small
to medium. The overall most powerful SQI was snrSQI
(r: G: —0.52, H: —0.55, Q: —0.54), even though rdspSQI
provided a slightly stronger effect size (—0.54) in G.
aCCmSQI (r: G: —0.51, H: —0.50, Q: —0.50) performed
second and rdspSQI (r: G: —0.54, H: —0.43, Q: —0.46)
third best. The effect sizes of the SQIs in G were increased
or similar to those in H and Q. Compared to H, a decrease
in sSQI and psSQI effect sizes was observed in Q.

Results of w classification are shown in Table 3 (con-
fusion matrix) and Table 4 (evaluation parameters). Up to
81 % (G) of erroneous H R, were detected (Sensitivity).
The amount of actually correct H R, that were classified
as erroneous (FP rate) varied with 21 % (G), 9 % (Q), and
5% (H). Comparable across the color channels were the
values of w classification accuracy (80-83 %), error rate
(17-20 %), PPV (72-79 %), and NPV (80-84 %). NPV
can be interpreted as the new accuracy of H R, (with SQI-
filtering) ACC’. Only segments with prediction w; = o
(TN, EN in Table 3) from the cross-validation test sets are
taken into account. AC'C’ showed considerable relative
improvement to ACC (G: +60 %, H: +15 %, Q: +19 %).

Table 2: Statistical evaluation of SQIs in the color chan-
nels G, H, and Q with group size Nq(w), H R, accuracy
ACC = Ng(0)/(Ns(o) + Ng(e)), and effect size r (rank-
biserial correlation).

RGB-G HSV-H NTSC-Q

N,(w = o) 4095 6023 5752
Ny(w =) 4112 2184 2455
ACC 0.50 0.73 0.70
(s5Q1) 1044 1034 1011
r(psSQI) +0.48  +0.35  +0.12
r(rdspSQI) —-0.54 —0.43 —0.46
r(snrSQI) —-0.52 —-0.55 —0.54
r(aCCmSQI) —051 —0.50 —0.50
r(sCCmSQI)  +0.26  +0.21  +0.23

Table 3: Confusion matrix definition and results for the
color channels G (RGB-G), H (HSV-H), and Q (NTSC-Q).

predicted class
w ° o
true positive (TP) false negative (FN)
G: 3325, H: 1133, Q: 1393 | G: 787, H: 1051, Q: 1062
false positive (FP) true negative (TN)
G: 868, H: 331, Q: 537 G: 3227, H: 5692, Q: 5215

true class

Table 4: Evaluation of decision tree w classification by
color channel. The pairs accuracy* and error rate, sensitiv-
ity and FN rate, specificity and FP rate complement each
other to one. N;=TP+TN+FP+FN (see Table 3). PPV:
Positive Predictive Value, NPV: Negative Predictive Value.
*Accuracy of w classification is not to be confused with ACC.

Parameter Definition RGB-G HSV-H NTSC-Q
Accuracy* (TP+TN)/N,  0.80 0.83 0.81
Error rate  (FP+FN)/Ng 0.20 0.17 0.19
Sensitivity TP/(TP+FN)  0.81 0.52 0.57
FN rate FN/TP+FN)  0.19 0.48 0.43
Specificity TN/(TN+FP)  0.79 0.95 0.91

FP rate FP/(TN+FP) 0.21 0.05 0.09
PPV TP/(TP+FP) 0.79 0.77 0.72
NPV TN/(TN+EN)  0.80 0.84 0.83

The achieved improvement is broken down for the
10 emotional stimuli of BP4D+ for G in Figure 2. The
strongest relative increase from ACC to ACC' was
reached in stimulus 4 (startle induced by sudden sound
burst [12]) in all color channels (G: +191 %, H: +53 %,
Q: +65%). ACC and ACC’ peaked in stimulus 3
(sadness induced by video clip of 911 emergency phone
call [12]) in all color channels (G: 0.77 and 0.91, H: 0.87
and 0.92, Q: 0.87 and 0.91).
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Figure 2: Accuracy (green) stacked with error rate (red)
of all data (ACC) and SQI-filtered data (ACC’, stimu-
lus numbers with ') from BP4D+ by stimulus for the green
channel. Each stimulus targets to an emotion: 1 Happi-
ness, 2 Surprise, 3 Sadness, 4 Startle, 5 Scepticism, 6 Em-
barrassment, 7 Fear, 8 Physical pain, 9 Anger, 10 Dis-
gust [12]. Rotated numbers show the number of used seg-
ments. SQI-filtering improved accuracy across all stimuli.

5. Discussion

Our results show, there is no single SQI that can clearly
separate the groups w = o and w = e. Interestingly, the
effect sizes of almost all SQIs are strongest in G, the chan-
nel with the lowest ACC. SQIs are not only of greater
importance here because more signals have to be rejected,
they also perform better in this channel. The combina-
tion of SQIs for SQI-based filtering with a decision tree
markedly improves AC'C' across all color channels. Even
though sensitivity of H and Q are lower compared to G,
the generally higher signal quality in these channels leads
to fewer erroneous H R.,. The large increase from ACC
to ACC’ in G attributes H R, from G similar confidence
as HR., from H or Q. Even though H R, from all color
channels are equally reliable now, H and Q retain more
data than G.

Stimulus-wise analyses confirm the negative impact of
motion artifacts on AC'C, e.g. by head movement or fa-
cial expression. Whilst subjects remain still during the
sad phone call of stimulus 3, they startle on the sudden
sound burst of stimulus 4. The proposed SQI-filtering in-
creased ACC across all stimuli. The improvement is par-
ticularly great for motion-rich videos, whose AC'C” is now
approaching the level of low-motion videos. This holds
across all color channels. It should be noted that the im-
provement by SQI-filtering does not require any external
reference, but can be obtained directly from the signal.

Future investigations should include video level SQIs
such as the average frame-wise intensity change or phase
maps [4] to exploit spatio-temporal information. Also
other signal level SQIs such as distance and relative differ-
ence of spectral peaks which depend on Singular Spectrum
Analysis [5] could be integrated.
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