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Abstract 

 The goal of automatic ECG analysis is to assess the 

clinical status of the heart system as accurately as possible, 

and the identification of P and T waves plays a significant 

role in this matter. 

 This works presents original algorithms for the 

detection of P and T waves. These algorithms are based on 

the morphological and temporal characteristics of the 

electrocardiogram. To test and compare the algorithms’ 

performance, we considered the QTDB and MIT-BIH 

Arrhythmia annotated databases.  

The developed algorithms obtained a good performance 

for the detection of both peaks. In particular, in both the 

QTDB and MIT-BITH database the P wave detection 

algorithm obtained considerably higher performance than 

those presented in the literature (QTDB: 95.87% vs 

89.05%; MIT-BITH: 84.65% vs 83.36% for Lead 1). The T 

wave detection algorithm, achieved best performance than 

those in literature in the QTDB (89.05% vs 87.49%) while 

in the MIT-BITH database results were almost comparable 

to those reported in the literature. These findings suggest 

the high potential of the proposed simple algorithms for P 

and T wave detection in ECG. 

 

1. Introduction 

A typical ECG consists of a quasi-periodic succession 

of groups of waves (PQRST) representing the cardiac 

cycle. The P wave represents the depolarization that 

spreads from the sino-atrial node throughout the atria, the 

QRS complex corresponds to the ventricular 

depolarization, while the T wave corresponds to the 

ventricular repolarization phase of the heart cycle. 

 The morphology of the P wave provides relevant 

information concerning intra-atrial conduction, 

hypertrophic conditions of the atria and atrioventricular 

conduction. In some pathological conditions the 

morphology of the T wave may change from beat to beat 

[1]. The correct identification of P and T waves is 

extremely important for an appropriate diagnosis of 

cardiac problems. In particular, accurate P wave detection 

and recognition of its variations is relevant in clinical 

diagnosis of supra-ventricular arrhythmia as well as for 

confirming the presence of ventricular arrhythmia [2]. 

Moreover, the exact delineation of P wave is required in 

the identification of atrial fibrillation [3, 4]. On the other 

side, the detection and delineation of T wave is required 

for the identification of potentially fatal arrhythmia, 

myocardial infarction and acute coronary syndrome [5]. 

The identification of P and T waves is traditionally 

performed by cardiologists which visually inspect signal 

morphology. This process is time-consuming and requires 

expert human resources with specialized education and 

practice. Therefore, the automatic analysis of ECG for the 

detection of characteristic waves can be a useful tool for 

the early detection of cardiac abnormalities and the 

prevention of their quick progress.  

Although different automatic approaches have been 

proposed in literature for the detection of on, off and peak 

location of P and T wave of the ECG signal [6,7], the 

results are still unsatisfactory. This is also due to the 

limited availability of annotated databases on which the 

algorithms can be trained and tested. Moreover, these 

methods have often a high computational cost, making 

them unusable for real-time applications. Furthermore, the 

performances of these methods are often not comparable 

because the Authors use different tolerance window in 

defining True Positive (TP) events. 

In this paper, we present a novel algorithm which is 

based on the morphological and temporal characteristics of 

ECG, for a fast and accurate detection of P and T waves. 

 

2. Methods 

Two different algorithms were implemented for P wave 

and T wave detection. These algorithms were applied on 

the two leads of the selected databases. Since the ability to 

detect P and T waves critically depends on the correct 

positioning of R peaks, our algorithms were evaluated 

considering annotated R peaks. The performance of the P 

wave and T wave detection algorithms was then 

determined by comparing the detected fiducial points with 

the annotation of the P and T wave in the databases. 

Specifically, the peaks were detected for comparison with 
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the performance of the algorithm in [7].  

 

2.1. Data 

The algorithms developed in this study were tested on 

two different databases freely available from the 

PhysioNet portal: the MIT-BIH Arrhythmia Database [8] 

and the QT database [9]. Both the two databases are 

annotated for QRS complexes and P and T waves 

annotations. Table 1 summarize the characteristics of the 

two databases. The algorithms were tested on both 

available leads for each record.  

The MIT-BIH arrhythmia database consists of 48 30-

min ECG registrations obtained with a sampling frequency 

of 360 Hz. For consistency with the study by Friganovic et 

al. [7] the following records were excluded from the 

analysis: 102, 104, 107, 207 and 217. This database 

includes R peaks annotation while P and T waves 

annotations are provided in [5]. 

The QT database includes 105 15-minutes ECG records, 

sampled at (or resampled to) 250 Hz. Only the last 5 

minutes of the records are annotated. The records in QT 

Database were taken from seven different databases. 

Between 30 and 100 representative beats were manually 

annotated by cardiologists in each record, who identified 

the onset, peak, and offset of P waves, onset, peak, and 

offset of QRS complexes, the peak and offset of T waves, 

and (if present) the peak and offset of U-waves [9]. 

Annotations in .atr format, reference beat annotations from 

the original database, were recalculated for record sel232 

in the QT database on the basis of the record 232 

annotations from the MIT-BIH Arrhythmia Database. 

 

Table 1. Characteristics of the two databases used in this 

study. 

 

Database No. of 

records 

No. of 

leads 

P peaks T peaks 

MIT-BIH 

arrhythmia 

database 

43 2 95989 

 

98395 

 

QT database 105 2 3194 3542 

 

2.2. Pre-processing 

The first pre-processing step was aimed at eliminating 

power-line interference which consists in a sinusoidal 

component at a frequency around 50 Hz (60 Hz in the US) 

and its harmonics. The power spectral density was 

estimated by the Welch method (averaged windowed 

periodogram, eight sections with 50% overlap, Hamming 

window). The existence of a power-line component was 

assessed by comparing the peak of the power density in a 

narrow interval around 50 Hz and around 60 Hz with the 

average power density in the neighbors of such 

frequencies. If power-line interference was detected, it was 

removed by applying notch filters (forward-backward, 

zero phase, 1 Hz bandwidth) at the detected peak frequency 

and its next three harmonics. 

Baseline wonder removal was realized by calculating a 

line passing through the Q wave onset (Qon) points. More 

precisely, the average values in an interval of 10 ms 

centered on the Qon points was used. For the search of Qon 

points an algorithm based on derivatives and amplitude of 

the signal was applied [10]. The detrended signal was 

obtained as the difference between the original and 

baseline signal. 

Movement and artifact canceling was obtained by the 

application of a low pass filtering realized with a moving 

average on 0.35 s. Finally, a 1000 Hz signal interpolation 

was applied to better localize fiducial points. 

 

2.3. P wave detection 

The P-wave peak (Ppeak) detection algorithm was 

aimed at maximize the area subtended between the signal 

and a line hinged to a signal in two points separated by a 

temporal distance of 0.08 s. Specifically, this line started 

with its right extremity in correspondence of the Qon point 

and was drawn backward until its left extremity reached  an 

estimate T wave end position obtained using the previous 

beat QRS annotation and applying the Bazett’s formula 

[11]  

 

2.3. T wave detection 

The algorithm for T-wave peak (Tpeak) detection is 

based on the identification of an interval of interest as the 

last 2/3 of the segment from QRS end to the T-wave 

position as identified by the Bazett’s formula [11]. Some 

interval adjustments were applied. Indeed, T-wave can 

occur, on a specific lead, with different shape. Commonly 

T wave is positive and its peak is well defined, however it 

may be also negative or biphasic (Figure 1). In order to 

manage this polymorphism of the T-wave, our algorithm 

started searching, in the selected interval, for the maximum 

of absolute value of the signal. After that, it compared the 

curvature of the original signal around such maximum with 

the curvature around the true maximum of the original 

signal. 

 

3. Results 

The performance of the proposed algorithms was 

evaluated in terms F1 score (F1). This measure was 

calculated as follows: 

 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (1) 
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For P and T waves peak detection, the detected peak was 

considered a true positive (TP) if its position was in the 

range of ± 75 ms from the annotated peak, otherwise, it was 

considered a false positive (FP) [12]. 

Table 2 summarizes the performance of our algorithm 

in the identification of P and T wave peaks in terms of F1 

for both leads for every database. Our results were 

compared with the algorithm obtaining the best 

performance as indicated in [7]. For each channel and 

database, the best results are emphasized in bold.  

 

Table 2. Performance of the proposed algorithm for the 

identification of P and T peak. 

 

Lead F1 Ppeak (%) F1 Tpeak (%) 

 This 

work 

Best in [7] This 

work 

Best in [7] 

QTDB ch1 95.87 89.64 89.05 87.49 

QTDB ch2 92.52 86.92 88.70 88.50 

MIT-BIH ch1 84.65 83.37 88.39 91.83 

MIT-BIH ch2 78.32 78.09 64.50 60.68 

 

It is important to notice that not the same algorithm 

obtained the best performance in [7] nor for the two 

databases neither for the two waves or even for the two 

leads. In Table 3 we reported the performance of our 

algorithm for Ppeak detection compared with the 

performances of the algorithms which obtained at least one 

of the best performances in [7]. 

 

Table 3. Summary performance for P peak detection. 

 

Method QTDB MIT-BIH Mean  

Lead 1 

This work 95.87 84.65 90.26  

Martinez WT 85.17 76.69 80.93  

Martinez WT + PT 89.64 83.37 86.50  

Martinez WT + 

templates 

86.78 - -  

MMF + Elgendi 46.27 54.39 50.33  

Lead 2  

This work 92.52 78.32 85.42  

Martinez WT 85.82 67.58 76.70  

Martinez WT + PT 86.92 78.09 82.50  

Martinez WT + 

templates 

86.75 - -  

MMF + Elgendi 42.07 44.75 43.41  

 

In Table 4 we reported the performance of our algorithm 

for Tpeak detection compared with the performances of the 

algorithms which obtained at least one of the best 

performances in [7]. 

 

Table 4. Summary performance for T peak detection. 

 

Method QTDB MIT-BIH Mean  

Lead 1  

This work 89.05 88.39 88.72  

Martinez WT 86.91 68.23 77.57  

Martinez WT + PT 84.99 71.53 78.26  

Martinez WT + 

templates 

87.49 - -  

MMF + Elgendi 76.13 91.83 83.98  

  Lead 2     

This work 88.70 64.60 76.65  

Martinez WT 88.46 60.68 74.57  

Martinez WT + PT 84.71 59.73 72.22  

Martinez WT + 

templates 

88.50 - -  

MMF + Elgendi 79.97 51.88 65.92  

 

3. Discussion and conclusions 

 In this paper, we presented a novel approach for the 

detection of P and T peaks. The proposed methodology 

displays good F1 for the detection of both peaks. 

In particular, on the QTDB our algorithm obtained 

considerably higher performance than those in the 

literature [7] for both P (95.87% vs 89.05% for Lead 1 and 

92.52% vs 86.92% for Lead 2) and T wave (92.52% vs 

87.49% for Lead 1 and 88.70% vs 88.50% for Lead 2) 

detection. On the MIT-BIH database our results were 

 
a 

 
b 

Figure 1: Examples of T waves shapes. a) Negative peak, b) 

Biphasic. 

Page 3



better than that of the literature for P wave detection 

(84.65% vs 83.37% for Lead 1 and 78.32% vs 78.09 % for 

Lead 2) and almost comparable to those reported in the 

literature for T wave detection.  

Notably, the detection of Tpeak, which gave lower 

performance compared with Ppeak, is somehow 

complicated by the fact that different shapes of the wave 

exist in the databases, as shown in Figure 1. Moreover, 

Elgendi et al. [5] often did not annotate the inverted T 

waves, which is visible when inspecting both leads. 

It is important to underline that in [7] the best 

performances were not obtained with the same algorithm. 

The algorithms with the best performances were: i) the one 

by Martinez et al. [13] based on wavelet transformation 

(WT) approach; ii) the combination of this algorithm with 

Martinez's PT algorithm based on phasor transform (PT) 

[14]; iii) the WT algorithm with window parameter 

modification based on waveform templates, as introduced 

in [6]; iv) the algorithm by Elgendi et al. based on moving 

averages [15] with mathematical morphological filtering 

(MMF) for noise reduction and baseline correction [16]. 

Although the three algorithms based on Martinez WT 

approach obtained high performance on QTDB, the 

performance on MIT-BITH database were quite poor, 

especially for T wave. On the contrary, while the algorithm 

by Elgendi was the one who achieved the best performance 

for T wave detection on MIT-BITH database in Lead 1, its 

performance was very low in Lead 2 and quite low for 

QTDB. 

Observing the mean value of the performance of the 

different algorithms for the two leads of the two databases 

(Table 3 and Table 4), it is evident that ours are the ones 

with the best mean value which is far higher than the others 

algorithm. Thus, the strength of our algorithms for peak 

detection is their high stability and generalizability so that 

the performance remains high while changing the dataset.  

The presented algorithms are simple in their approach 

and so they are applicable also in the contests in which low 

computational cost is required such as real-time 

applications. These findings suggest the high potential of 

the proposed approach for P and T wave detection in ECG. 
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