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Abstract

Atrial fibrillation (AF) is the most frequent irregular
heart rhythm due to disorganized atrial electrical activity,
often sustained by rotational drivers called rotors.
The non-invasive localization of AF drivers can lead
to improved personalized ablation strategy, suggesting
pulmonary vein (PV) isolation or more complex extra-
PV ablation procedures in case the driver is on other
atrial regions. We used a Machine Learning approach
to characterize and discriminate simulated single stable
rotors (1R) location: PVs, left atrium (LA) excluding the
PVs, and right atrium (RA), utilizing solely non-invasive
signals (i.e., the 12-lead ECG). 1R episodes sustaining
AF were simulated. 128 features were extracted from the
signals. Greedy forward algorithm was implemented to
select the best feature set which was fed to a decision
tree classifier with hold-out cross-validation technique.
All tested features showed significant discriminatory
power, especially those based on recurrence quantification
analysis (up to 80.9% accuracy with single feature
classification). The decision tree classifier achieved 89.4%
test accuracy with 18 features on simulated data, with
sensitivities of 93.0%, 82.4%, and 83.3% for RA, LA, and
PV classes, respectively. Our results show that a machine
learning approach can potentially identify the location of
1R sustaining AF using the 12-lead ECG.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
arrhythmia in clinical practice and a leading cause of
hospitalization and death [1]. This arrhythmia is often
sustained by localized functional reentrant circuits called

rotors, characterized by curved wavefronts and wavetails
that meet each other at a singularity point [2]. One
common therapy to terminate AF is ablation. Typically,
“triggers” that start AF and/or the “substrate” that
participates in its perpetuation are targeted during ablation.
However, it remains unclear which of the two approaches
is the most effective for treating AF, specially in advanced
stages of the disease. Narayan et al. showed that it
is important to localize and ablate rotors, focal sources
drivers or organizing sources of fibrillation to terminate
AF [3]. Additionally, triggers and sustaining mechanisms
are often localized in the pulmonary veins (PVs) [4]. Thus,
PV isolation (PVI) is the first ablation procedures applied
to try to terminate AF.

In this preliminary work, we sought to characterize and
identify single stable rotors (1R) located near the PVs,
on extra-PV left atrium (LA) areas, and on right atrium
(RA) areas by using 12-lead electrocardiogram (ECG) in
a simulation study. This non-invasive method could help
guide ablation procedures, highlighting atrial regions that
may be important in the AF perpetuation, and hence targets
for ablation. In case of rotors identified within the PVs,
the application of a priori invasive and time-consuming
electrophysiologic mapping procedures could be avoided,
proceeding directly with PVI.

2. Methods

2.1. Simulations

1R episodes sustaining AF were simulated using the
phase singularity distribution method on a volumetric atrial
model built from clinical data, as reported in [5]. Briefly,
the phase singularities were placed in 300 uniformly
distributed points in the atria, and 3 s of activation were
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computed. Only the cases with 1R episodes that kept going
for the whole simulation time were considered for further
analysis. This led to unbalanced data generation. As
result of the monodomain simulation, the transmembrane
voltage was used to calculate the body surface potential
map (BSPM) on 8 different torso models generated from
segmented MRI data of healthy male and female subjects
(Fig. 1), [5]. From the BSPM, the 12-lead ECG was
extracted with a length of 3 s (Fig. 1). Only f-waves
without the QRS-T complex composed the 12-lead ECG,
since the ventricles were not included in the simulations.
440 sets of 12-lead ECG formed the final dataset (40 ECGs
with 1R located in the PVs, 112 in extra-PV LA areas, and
288 in the RA).

2.2. Feature extraction

128 features were extracted from the the signals using
several biosignal processing methods, such as: Hjort
descriptors to analyse the spectral moments from the time
signals [5]; recurrence quantification analysis (RQA) on
vectocardiogram (VCG) [6], individual component RQA
(icRQA), and spatial reduced RQA (srRQA) [7] to analyse
the topological structure of multidimensional dynamical
systems; ratio of the principal component analysis (PCA)
eigenvalues, organization index, and spectral entropy to
study the variability and stability of these mechanisms over
time and frequency [5], [8], [9].

2.3. Feature selection

The feature set was selected with a greedy forward
selection technique. Starting with an empty feature set,
this algorithm added the feature which lead to the highest
accuracy increase of the set at each iteration. The
performances were based on the validation set. When the
performance did not increase further, the algorithm was
stopped. Candidate features with a correlation coefficient
>0.6 with any of the features already included in the set
have been removed to avoid possible correlation between
features and redundancy of information into the set.

2.4. Classification

Due to its simplicity, a decision tree classifier was
implemented for a 3 classes discrimination: PV rotors,
extra-PV LA rotors, and RA rotors.

All extracted features were individually evaluated with a
decision tree classifier and a leave-one-out cross-validation
technique. Subsequently, with the feature set selected by
the greedy technique, a multi-feature classification with
hold-out cross-validation was performed (70%, 15%, and

Table 1. Three single features with the highest accuracy
for PV vs. extra-PV LA vs. RA classification

Feature Accuracy (%)
RR

V CG 80.9
EDL

srRQA 80.4
EV L

icRQA4
80.0

15% of the total dataset was randomly divided into training
set, validation set, and test set, respectively). Sensitivity
and specificity were calculated for each class considering
the class at hand as positive and the remaining two classes
as negative.

2.5. Statistical analysis

The ability of the features in separating the different
classes was assessed using the the Kruskal-Wallis non-
parametric one-way analysis of variance for a multi-class
evaluation. p-values of less than 0.01 were considered
statistically significant.

3. Results

3.1. Features evaluation

All features showed an individual and significant
discriminatory power. Among them all, RQA’s parameters
have stood out particularly well. Indeed, the most
discriminating 3 individual features were: the recurrence
rate extracted from VCG (RR

V CG); the diagonal entropy
extracted with srRQA (EDL

srRQAd
; and the vertical entropy

extracted with icRQA (EV L
icRQA4

). Table 1 shows the
accuracy singularly reached. These 3 features showed
significantly higher values for 1R located in the PV class,
followed by the extra-PV LA class, and the RA class,
respectively (Fig. 2).

3.2. Rotors location classification

The decision tree classifier achieved 89.4% test
accuracy with a feature set of 18 features, with sensitivity
of 93.0%, 82.4%, and 83.3%, and a specificity of 95.2%,
77.8%, and 83.3% for RA, extra-PV LA, and PV class
respectively. 5 selected features have been calculated using
RQA methods (including the 3 best features showed in
section 3.1). 11 selected features have been extracted from
the ratio of the PCA eigenvalues approach. Finally, 2
selected features belonged to the Hjort descriptors. Table 2
shows the test-set confusion matrix obtained from the
decision tree using the feature set (class LA represents
class extra-PV LA).
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Figure 1. A.1: Simulated PV rotor. B.1: Simulated extra-PV LA rotor. C.1 : Simulated RA rotor. The red arrows show the
rotor position and direction. A.2-B.2-C.2: BSPMs of one of the 8 torso models generated from MRI. The torso potential
was obtained by solving the forward problem of electrophysiology from the simulated TMV on the atria. A.3-B.3-C.3:
Example of the f-wave for lead I, II, and V1 from the 12-lead ECG signals extracted from the BSPMs.

Table 2. Test-set confusion matrix for RA, extra-PV LA,
and PV rotors classification

True class
RA LA PV

Predicted class
RA 40 2 0
LA 3 14 1
PV 0 1 5

4. Discussion and Conclusions

Simulations provide ideal and controlled scenarios
where the ground truth for AF perpetuation sustained by
1R is known in all the cases. This allows the analysis
of each simulation without the influence of secondary, or
unknown, mechanisms, e.g., other simultaneous rotors.

The RQA’s parameters showed to be key features for this
classification (Table 1). Probably due to their sensitivity
in detecting changes in the dynamic behavior of these
mechanisms. In fact, looking also at the example ECGs in
Fig. 1A-B-C.3, our simulations have shown that the ECG
signals are more irregular in cases when 1R is not in the
PVs area. This information was also quantified by some
RQA parameters, having significantly higher values for
the RA class, followed by the extra-PV LA class, ending
with lower values for the PV class (Fig. 2). This can be
seen as confirmation of what was suggested in a previous
study [5].

As mentioned above, the ECG signals in the case of 1R
not located in the PVs areas are more irregular. All features
extracted were aimed at detecting these irregularities and
differences between classes. The results obtained with
the hold-out cross-validation showed that an automatic
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Figure 2. Boxplots of the 3 single features with the
highest accuracy for PV (red) vs. extra-PV LA (blue) vs.
RA (green) rotor location classification. All features are
statistically different between the classes with p <0.01

classifier with the features extracted in this work can
potentially identify the area where a 1R is located using
the 12-lead ECG.

The high sensitivity and specificity values obtained
for all classes show that this automatic classification
method categorizes most of the cases in analysis into the
correct class. Therefore, if 1R was classified as a PV
case, doctors could proceed directly with a PVI by cryo-
ablation, without using a priori mapping system. In the
other cases, a radio frequency ablation procedure with a
previous mapping of the electrical activity of the atrium of
interest would be required.

The use of a non-invasive technique (i.e., 12-lead ECG),
in combination with machine learning approaches, may
directly suggest to the doctor the atrial regions that may
be important in the AF perpetuation, and hence targets
for ablation. Further tests on clinical data, labelled by
inspecting the local activation maps, are necessary to
effectively assess the proposed approach. A subsequent
study to predict the outcome of PVI in cases where the AF
driver is in PV is ongoing.

In conclusion, this work could be extended with a
prior characterization of different AF driver mechanisms
and AF complexity analysis. Several and more
robust classification algorithms can be tested and more
simulations can be generated with different atrial models.
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