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Abstract

In this work, we describe an unsupervised deep learn-
ing framework featuring a Laplacian-based operator as
smoothing loss for deformable registration of 3D cine car-
diac magnetic resonance (CMR) images. Before registra-
tion, the input 3D images are corrected for slice misalign-
ment by segmenting the left ventricle (LV) blood-pool, LV
myocardium and right ventricle (RV) blood-pool using a
U-Net model and aligning the 2D slices along the cen-
ter of the LV blood-pool. We conducted experiments us-
ing the Automated Cardiac Diagnosis Challenge (ACDC)
dataset. We used the registration deformation field to warp
the manually segmented LV blood-pool, LV myocardium
and RV blood-pool labels from end-diastole (ED) frame to
the other frames in the cardiac cycle. We achieved a mean
Dice score of 94.84%, 85.22% and 84.36%, and Haus-
dorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm,
for the LV blood-pool, LV myocardium and RV blood-pool,
respectively. We also introduce a pipeline to estimate pa-
tient tractography using the proposed CNN-based cardiac
motion estimation.

1. Introduction

Regional myocardial function assessment entails accu-
rate characterization of several parameters such as my-
ocardial motion, strain, torsion and wall thickness, which
have been shown to help better understand myocardial dis-
eases [1]. To this end, accurate cardiac motion estimation
from CMR images is important, as it helps assess the kine-
matic and contractile properties of the myocardium, both
of which are direct quantifiers of regional heart function.

Cardiac motion estimation involves finding an optical
flow representation between consecutive 3D frames of a
4D cine CMR dataset and, therefore, can be formulated as
an image registration problem. Deep learning algorithms
have gained increased popularity in medical image regis-
tration. Qin et al. [2] proposed a joint deep learning net-
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work for cardiac motion estimation and segmentation of
2D cine cardiac MR images. Qiu ef al. [3] compared
the performance of supervised and unsupervised training
strategies for cardiac motion estimation using convolu-
tional neural networks (CNN), performed in the 2D plane.
Morales et al. [4] proposed an unsupervised CNN-based
3D deformable registration method for cardiac motion es-
timation; however, they do not account for the out-of-plane
motion of the two-dimensional stack of the CMR images
that leads to slice misalignment.

Here we propose a CNN-based 4D deformable regis-
tration technique for consistent motion estimation from
4D cine CMR images. We assess the performance of the
proposed framework on the ACDC dataset [5] and also
compare the effect of the gradient-based operator and the
Laplacian-based operator as regularization terms in the
loss function used to back-propagate the CNN (Fig. 1b).

2. Methods

2.1. Data

We used the 2017 ACDC challenge dataset [5], con-
sisting of short axis cine CMR images for 150 subjects,
acquired using two different MRI scanners of magnetic
strength 1.5 T and 3.0 T. The dataset is evenly split into
five disjoint subgroups - normal, dilated cardiomyopathy,
hypertrophic cardiomyopathy, abnormal RV and subjects
with prior myocardial infarctions.

2.2.  Slice Misalignment Correction

To reduce artifacts caused by inherent slice misalign-
ments during cine CMR image acquisition, we leverage the
slice misalignment correction method presented by Dangi
et al. [6]. We train a modified version of the U-Net model
[7] inspired from Isensee et al. [8], to segment the car-
diac chambers (LV blood-pool, LV myocardium and RV
blood-pool) from 2D CMR slices. We use these predicted
segmentation maps to crop the regions of interest (Rol)
and to identify the centers of the LV blood-pool. The 2D
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Figure 1: (a) Slice misalignment correction and (b) 4D deformable registration workflow.

slices are stacked such that the LV blood-pool centers are
collinear, resulting in a slice misalignment corrected 3D
CMR image (Fig. 1a). The U-Net model is trained on the
ED and end-systole (ES) frames of the CMR data of 80
subjects and validated on 20 subjects.

2.3. 4D Deformable Registration

We employ the VoxelMorph [9] framework to find an
optical flow representation between a sequence of 3D im-
age pairs {(Igp, Igp+t) }t=123,.. Ny—1 Where Ny is the
total number of frames, and at each iteration, an image pair
(Igp,Igp+t) is input to the CNN and a registration field
¢ is output. The registration field is fed to a spatial trans-
former network (STN) [10] along with the ED frame, Irp,
to produce a warped image, Igp o ¢ (Fig. 1b).

To train the CNN, a loss function consisting of two com-
ponents is used to optimize the network:

L= Lsimilarity + )\Lsmoothv (D

where Lginilarity 18 the mean squared error (MSE) between
the target frame /g p, and the warped ED frame Igp o ¢:

MSE = 0] Z Igp (i) — Uep o ¢1(1))*, ()
i€Q

where (2 is the spatial domain of the images and i € R?
is the position of a point on the frame. The second term
in the loss function (eq. (1)) is a smoothing loss function
Lgmoo that spatially smoothes the registration field ¢ and
A is the regularization parameter. In general, a diffusion
regularizer on the spatial gradients of the registration field
is used as the smoothing loss function and is given by

Lsmooth = Z Hv¢(l)||2 3
ieQ
Here we experiment with a Laplacian operator in the
smoothing loss function, inspired from Zhu et al. [11]:

D121 “

i€Q

Lsmooth =

Unlike the gradient operator, which only considers the
local properties of the objective function y = 22, the

Laplacian operator considers the global properties of the
function y = 22, i.e., it considers the slope magnitude and
its trends when choosing a direction. [11].

We divide the total 150 CMR dataset into 110 for train-
ing, 10 for validation and 30 for testing. All the cropped
input cine CMR frames are resampled to 96 x 96 x 16
voxels with 1.5 mm isotropic resolution. We train the Vox-
elMorph CNN using the Adam optimizer with a learning
rate of 10™%, halved at every 10" epoch for 50 epochs on
a machine equipped with a NVIDIA RTX 2080 Ti GPU
with 11 GB of memory; the regularization parameter \ is
setto 1073,

3. Results

The manual segmentation labels of the LV blood-pool,
LV myocardium and RV blood-pool for ED and ES frames
of 100 subjects are provided in the ACDC challenge
dataset. To evaluate the performance of the CNN-based
deformable registration algorithm, we warp the segmenta-
tion map of the ED frame to ES frame using the estimated
registration field, and compute the Dice score and Haus-
dorff distance (HD) between the segmentation map of ES
frame and the warped segmentation map of ED frame. We
refer to this as the “gold” standard comparison, as the seg-
mentation maps used for comparison are manually anno-
tated by experts. We also warp the segmentation map of
the ED frame to all subsequent cardiac frames, and com-
pute the Dice score and HD between the warped segmen-
tation map of ED frame and the segmentation maps pre-
dicted by the modified U-Net model [8]. We refer to this
as the “silver” standard comparison, as the segmentation
masks used as reference were not annotated by experts,
but rather were generated using techniques previously val-
idated against expert annotations.

In Table 1, we show the mean Dice score and mean HD
for LV blood-pool, LV myocardium and RV blood-pool be-
fore registration (post misalignment correction) and after
registration on the test dataset, for both “gold” and “silver”
standard comparisons. We also compare the effect of the
gradient-based operator and the Laplacian-based operator
on the VoxelMorph-based deformable registration method.

Our proposed method achieves a 83.04% Dice score and
8.46 mm HD for all cardiac chambers following regis-
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Table 1: Mean Dice score and Hausdorff distance (HD) for LV blood-pool (LV), LV myocardium (MC) and RV blood-
pool (RV), for both “gold” and “silver” standard comparisons. Statistically significant differences between the registration
metrics before and after registration were evaluated using the Student t-test and are reported using * for p < 0.05 and **
for p < 0.005. The best evaluation metrics achieved are labeled in bold.

Dice (%) HD (mm)
LV MC RV LV MC RV
ED to ES frames - Gold standard Before registration 87.30 69.15 70.18 7.22 | 893 11.85
VoxelMorph (gradient) | 92.17** | 79.39** | 77.58* | 5.59* | 8.05 11.75
VoxelMorph (Laplacian) | 93.73** | 80.59** | 79.63* | 5.11* | 7.98% | 11.62
ED to all frames - Silver standard Before registration 81.29 80.15 77.32 3.13 | 6.08 8.61
VoxelMorph (gradient) | 94.67** | 84.08** | 82.73* | 2.51 | 6.07 8.96
VoxelMorph (Laplacian) | 94.84** | 85.22** | 84.36%* | 2.74 | 5.88* | 9.04

Voxelmorph (Gradient) Voxelmorph (Laplacian)

ES Frame (Gold
Standard Comparison)

ED + 5th Frame (Silver
Standard Comparison)

Figure 2: Panel 1-1: ES CMR slice with manually anno-
tated segmentation contours of cardiac chambers overlaid
on the slice; Panel 1-2: post registration contours using
gradient-based operator as smoothing loss with segmenta-
tion contours of warped ED frame overlaid on ES frame
(Dice: 81.32%, HD: 3.64 mm); Panel 1-3: post registra-
tion contours using Laplacian-based operator as smooth-
ing loss (Dice: 83.56%, HD: 3.48 mm). Panel 2-1: ED
+ 5t frame CMR slice with segmentation contours ob-
tained from U-Net model; Panel 2-2: post registration
contours using gradient-based operator as smoothing loss
(Dice: 92.36%, HD: 4.12 mm); Panel 1-3: post registration
contours using Laplacian-based operator as smoothing loss
(Dice: 92.42%, HD: 4.12 mm).

tration using the gradient-based smoothing loss function,
and a 84.65% Dice score and 8.23 mm HD following reg-
istration using the Laplacian-based smoothing loss func-
tion, for our “gold” standard comparison evaluated at ES
frames. Similarly, for our “silver” standard comparison,
conducted across all frames, we report a 87.16% Dice
score and 5.84 mm HD following registration using the
gradient-based smoothing loss function and a 88.14% Dice
score and 5.88 mm HD following registration using the

Laplacian-based smoothing loss function. Fig. 2 shows
the cardiac chamber contours propagated using our regis-
tration from ED frame to the other cardiac frames.

4. Discussion and Conclusion

We present a deep learning-based 4D deformable reg-
istration method for cardiac motion estimation from 3D
cine CMR images. The workflow also includes a slice mis-
alignment correction step that alleviates the challenges as-
sociated with out-of-plane motion in the slice stack that
would otherwise impact frame-to-frame image registra-
tion and motion extraction. In addition, we evaluate and
compare the effect of the gradient-based operator and the
Laplacian-based operator for smoothing the registration
field on the performance of VoxelMorph-based registra-
tion network for cardiac motion estimation. We observe
that the Laplacian-based smoothing loss function regular-
izes better than the gradient-based smoothing loss func-
tion. This can be attributed to the fact that the gradient
operator only considers the local properties of the objec-
tive function y = 22 and the Laplacian operator considers
global properties more than the gradient.

In Fig. 3, we show our intended application of cardiac
motion estimation, wherein the registration field obtained
from our CNN-based 4D deformable registration is used
to propagate the patient-specific anatomy and tractography
information from the ED frame to its subsequent frames.
The ex-vivo cardiac fiber architecture (CFA) was acquired
in 21 diffusion-tensor magnetic resonance imaging (DT-
MRI) scans and made publicly available by the CardioVas-
cular Research Grid from John Hopkins University. The
patient geometry and CFA are resampled isotropically, and
an affine transformation is performed on the CFA while
maintaining the integrity of the patient geometry. After-
wards, large deformation diffeomorphic metric mapping
(LDDMM) registration is performed to create an invert-
ible diffeomorphic map to warp and fit all 21 CFA scans to
the patient geometry. The tractography reconstuction was
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Figure 3: (a) Pipeline to estimate patient tractography using CNN-based frame-to-frame motion extraction. (b) Left:
Volume renderings of segmented LV myocardium patient geometry with dilated cardiomyopathy and accompanying CFA
acquired separately via ex-vivo DT-MRI warped to fit patient geometry. Right: Tractography reconstruction renderings of

the warped CFA given the DT-MRI gradient table.

performed on the warped and fitted CFA using general-
ized Q-sampling imaging (GQI) with a diffusion sampling
length ratio of 0.90 given its accompanying DT-MRI gra-
dient table converted to a b-table using a b-value of 1500
s/mm?. This workflow is shown in Fig. 3a and patient-
specific tractography examples are shown in Fig. 3b.
Ultimately, we intend to use this technique to build dy-
namic patient-specific myocardial models with associated

fiber architecture for biomechanical cardiac simulations.
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