Reconstructing Cardiac Wave Dynamics From Myocardial Motion Data
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Abstract

Various models exist to predict the active stresses and
membrane potentials within cardiac muscle tissue. How-
ever, there exist no methods to reliably measure active
stresses, nor do there exist ways to measure transmural
membrane potentials that are suitable for in vivo usage.
Prior work has devised a linear model to map from the ac-
tive stresses within the tissue to displacements [1]. In sit-
uations where measurements of tissue displacements are
entirely precise, we are able to naively solve for the ac-
tive stresses from the measurements with ease. However,
real measurement processes always carry some associated
random error and, in the presence of this error, our naive
solution to this inverse problem fails. In this work we pro-
pose the use of the Ensemble Transform Kalman Filter to
more reliably solve this inverse problem. This technique
is faster than other related Kalman Filter techniques while
still generating high quality estimates which improve on
our naive solution. We demonstrate, using in silico simu-
lations, that the Ensemble Transform Kalman Filter pro-
duces errors whose standard deviation is an order of mag-
nitude smaller than the least-squares solution.

1. Introduction

A large number of mathematical models exist that de-
scribe the motion and propagation of cardiac electrical po-
tentials and active tissue stresses within the walls of the
heart. However, these potentials and stresses are either
difficult or impossible to measure, and thus remain dif-
ficult to quantify in in vivo settings. Clinical diagnos-
tic tools such as electrocardiograms or electrophysiology
studies are generally relied upon to assist in diagnosis of
cardiac function. These tools are useful but do not provide
the full information on the fundamental cardiac dynamics.
Methods like transillumination or optical tomography rely
on phototoxic dyes, plunge electrodes provide only local
data and are disruptive to the tissue, and noninvasive meth-
ods remain unable to produce transmural information, and
none of these methods provide information on the active
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stresses which cause deformation cardiac tissue [2][3].

Following the work of Otani, et al [1], we propose the
use of magnetic resonance imaging, ultrasound or com-
puted tomography to non-invasively track the full 3D con-
tractile motion resulting from action potentials (APs) and
the mechanical stresses they produce. These techniques all
yield high spatial resolution data and, in the case of ultra-
sound, the high temporal resolution necessary to visualize
faster events. Using the linearized Hunter-Nash model [4],
we construct an inverse problem whose solution yields the
underlying active stress information we desire. However,
methods for observing cardiac motion data are inherently
uncertain and thus naively solving the inverse problem re-
sults in a solution whose uncertainty is magnified.

To combat this uncertainty, we have devised an im-
plementation of the Ensemble Transform Kalman Filter
(ETKEF) as a state estimation tool [5]. This technique al-
lows us to incorporate knowledge of our flawed models
of these real-world systems alongside our uncertain mea-
surements in order to create better estimates of both mea-
sured and unmeasured quantities. We utilize the FitzHugh-
Nagumo model of AP propagation [6] in conjunction
with Nash-Panfilov electromechanical coupling [7] and the
Otani, et al model to simulate a 3D region of cardiac tissue
in order to study the reconstruction of these APs and active
stresses.

Work by Lebert and Christoph [8] utilizes a technique
similar to the Kalman Filter, but employ different models
for their estimations. Their models and methods encoun-
tered difficulties in reconstructing AP and stress data from
AP waves moving in directions perpendicular to the di-
rection of the cardiac muscle fibers. Our method is able
to faithfully reconstruct full spiral waves with AP motion
oriented at any angle relative to the angle of the fiber di-
rection, overcoming this limitation.

2. Methods

We first must establish a ground truth, for which we
must solve the forward problem. We construct the elec-
trical potential and refractoriness from the FitzHugh-
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Nagumo model, active stress from the Nash-Panfilov
model, and then the passive stresses, hydrostatic pressures
and strains from the linearized Nash-Hunter model. Ran-
dom noise is then added to the strains to mimic the inherent
noise of the measurement process. The inverse problem is
solved using both naive least-squares and the ETKF, with
the noisy strains as input data.

2.1. Cardiac Modeling

We have chosen to use the FitzHugh-Nagumo model as
it is very simple, and thus computationally efficient. The
model equations are as follows:
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v describes the electrical membrane potential at a point in
the domain while w describes the refractoriness of the tis-
sue at the same point. A represents the Laplacian, and
£=0.7, v=0.8 and €=0.2 are constant parameters. Using
these equations, we are able to construct a base truth AP
wave within our domain which adequately simulates the
motion of APs in real tissue. We begin by creating a sta-
tionary spiral wave pattern in the membrane potential. We
then use a version of the Nash-Panfilov coupling model to
simulate the production of active stress, 1;, within the tis-
sue:
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(3)
This equation allows us to simulate the delay between the
AP and motion in the tissue, as these events do not occur
contemporaneously. Finally, we use the linearized Hunter-
Nash model to yield tissue displacements from these active
stresses. We use the linearized version of the model, as
follows:
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In equation 4, X; represents the coordinates in the unde-
formed coordinate system, 7" is the passive second Piola-
Kirchoff stress tensor, E is the Lagrange-Green strain ten-
sor, p is the local hydrostatic pressure, T, is the active sec-
ond Piola-Kirchoff stress tensor due to the force induced
by the APs, and dx represent the local displacements. The
indices 1, j, k, [ span the values 1, 2, and 3, representing
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Figure 1: Figure la shows the generated AP from the
FitzHugh-Nagumo model in a spiral pattern. From this
AP, we use Nash-Panfilov coupling to construct the active
stress distribution shown in figure 1b. Then from this stress
distribution, we use the Otani et al model to construct the
displacements shown in figure 1c. We then add noise to the
displacements to simulate measurement error. Note in fig-
ure 1d that the displacements from 1c¢ are still clear, though
they have been obscured slightly by the noise.

the 3 spatial dimensions. This equation dictates the mo-
tion response to an applied active stress profile. Equation
5 enforces incompressibility. In the fully linearized matrix
form, we incorporate a further six equations to enforce no
displacement of, or rotation about, the center of mass.

For the forward problem, we solve equations (1-5) for
v, w, Ty, dx, 0y, 6z and p using forward Euler. A sim-
ple finite element method is used to discretize space. The
results of this process are shown in figure 1.

With ground truth data defined for all of our variables,
we then consider our inverse problem, which solves for v,
w, T, and p from dx, dy and §z. We simulate measurement
uncertainty to the displacements by adding a normally dis-
tributed random variable with zero mean and covariance
corresponding to roughly 10% of the displacements. Solv-
ing the inverse problem naively from these uncertain mea-
surements results in our estimated 7, being completely
dominated by noise, shown in 2a. It is also of note that
this method only allows us to reconstruct 7, and p, and
not the electrical potential or recovery variables. Thus we
incorporate the ETKF to improve our results.

2.2. The Ensemble Transform Kalman Fil-
ter

The Kalman Filter (KF) is a technique which combines
information from mathematical dynamical models and un-
certain data measured from real-world systems. The ETKF
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is a related technique for nonlinear dynamical systems.
The KF, in general, is capable of estimating the entire sys-
tem based on a measurement of only a subset of the system
state.

We first construct an initial ensemble of data estimates.
The ensemble can be chosen based on a measurement of
the system, but we assume no a priori knowledge of the
system state. So each member of the ensemble begins with
an initial estimate of being uniformly 0, plus random noise
to ensure that no two ensemble members are exactly the
same. We then proceed in two stages: the prediction step
and the update step.

For the prediction step, we propagate the ensemble
members forward using the dynamics for the system. Af-
ter some number of prediction steps, we then move to the
update step. In the update step, we apply a measurement
scheme to the predicted system state in order to generate
an expected measurement. We then compare our expected
measurement against an actual measurement of the system
and construct a gain matrix, which adjusts the entire sys-
tem state based only on a measurement of part of the entire
state, and we use this gain to correct our predicted state.

For our purposes, we have chosen to use 100 ensemble
members. We perform 5 prediction steps to every update
step, and use update scaling parameter p = 1.1. Our sys-
tem contains 25 nodes in both the = and y directions, and
5 in the z direction. We set Az = Ay = Az = 1 and
At = 0.01. We assume that the myocardial fiber direction
to run parallel to the x-axis. When a segment of tissue is
subject to higher active stresses, the tissue contracts in the
z-direction while expanding in the y- and z-directions, as
a result of incompressibility.

3. Results

We first solve the inverse problem naively. From the
noise-afflicted displacement data, we construct a least-
squares solution to attempt to reconstruct the source ac-
tive stress data, as shown in Figure 2a. We are only able
to reconstruct the active stresses, and not any of our other
dynamical variables of interest, as we only have a linear
relationship between the displacements, active stress and
the pressure. The actual wave present in the reconstructed
active stress has become heavily obscured due to the pres-
ence of noise in the measurements. The error associated
with our attempted reconstruction of the active stress is
roughly normally distributed and, as of the last time-step,
has a mean of —2.103 x 10~ and a standard deviation
of 5.217. This method produces errors that have a small
mean, but are highly imprecise and are thus unreliable.

Next, we attempt a solution with the ETKF. We are able
to remove much of the noise affecting the displacement
data, shown in Figure 2c. We are also able to construct es-
timates of all of our dynamical variables, not just the active
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Figure 2: Figure 2a shows our attempt to solve for the ac-
tive stress from the noisy displacements using linear least-
squares. The estimated stresses have been lost to noise.
Figure 2b shows our estimate of the active stress utilizing
the ETKF, which is significantly cleaner than Figure 2a.
Compare these two figures to Figure 1b. Also shown are
our measurements of the displacements in Figure 2¢ and
our estimates of the membrane potentials in Figure 2d, ob-
tained from the ETKF. Compare these to Figures 1c and
la, respectively.

stress. Thus we are additionally able to produce estimates
of the membrane potentials and the tissue recovery. Fig-
ures 2a and 2b show that our reconstruction of the active
stress is much improved compared to that produced by the
LSQ solution. The ETKF also produces an estimate of the
membrane potential, as shown in 2d. The error associated
with the ETKF active stress estimate remains roughly nor-
mally distributed, with mean 5.612 x 10~* and standard
deviation 0.282. Thus, our reconstruction has improved
significantly. A side-by-side comparison of the error be-
tween the two methods can be seen in Figure 3.

The ETKEF is not without limitations. It is significantly
slower than the LSQ estimate, and represents a greater
need for more high-powered computing. This need could
be met by transitioning from the ETKF to the Local En-
semble Transform Kalman Filter, which takes advantage
of localization in order to incorporate better paralleliza-
tion. Additionally, the ETKF has a period of transience
after estimations begin. For our simulation, we find that
the transient period lasts from ¢ = 0 until around ¢ = 15,
representing nearly one-third of the total simulation. How-
ever, once this transient period ends, the estimations of the
system quickly converge towards the true values. Once this
convergence occurs, the estimate remains close to the true
state. The transient period is less of an issue when recon-
structing phenomena on longer time scales.
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Figure 3: Comparison of the residual error in the estimates
of the active stresses between the Least-Squares solution
and the ETKF solution. Note that both error distributions
appear roughly normal with roughly O normal mean, but
the ETKF has much smaller variance.

4. Conclusions

In this work, we have described further refinements to
our novel method for estimating the propagation of APs
and active stresses in cardiac fibers and tissues from un-
certain measurements of the motion of said tissue. Our
method utilizes the ETKF to incorporate uncertain mea-
surements as well as our models to construct estimates of
the active stresses, membrane potentials and recovery state
within the tissue. We have described an implementation of
this model, which represents a three-dimensional segment
of tissue, and have shown that it represents significant im-
provement over the least-squares estimate generated with
Matlab’s backslash algorithm, both in terms of the number
of dynamical variables it can estimate and the accuracy of
the estimations that are created.

Our results retain the estimation quality of our prior
work while also decreasing computational runtime signifi-
cantly compared to Beam, ef al [9]. Additionally, we have
demonstrated a method for reconstructing APs and active
stresses even under complex AP configurations, where the
direction of motion of the AP runs perpendicular to the
direction of the cardiac muscle fibers. In the future, we
anticipate using the ETKF or LETKF to create estimates
of quantities which may be more difficult to quantify non-
invasively, such as tissue fiber direction or various param-
eters associated with the dynamics of the system. We will
also be looking to move to other polyhedral meshes for our
domain in order to more accurately represent the whole
heart or segments of tissue.
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