
Feature Extraction and Classification of Heart Sounds Signals Based on Time-

Dependent Entropy and Spectral Entropy Estimation 

Rosario Ríos-Prado1, Álvaro Anzueto-Ríos1, Blanca Tovar-Corona1 

1Instituto Politécnico Nacional (UPIITA-IPN), Mexico City, Mexico  
 

Abstract 

In this paper, two entropy methods based on Shannon 

Entropy are exploited, the Time-Dependent Entropy and 

the Spectral Entropy, calculated in a time domain and 

frequency domain, respectively. The two calculated 

entropies together with the Probability Distribution were 

obtained from a database that contains simultaneous 

recordings from the four main auscultation areas. These 

areas are used to test if the probability of detecting the 

abnormality increases in any of the heart valves and to 

compare the results in each area respect to signals 

randomly selected from the database. The parameters 

obtained from 20 randomly selected signals of the data 

were used as input features for the K-Nearest Neighbour 

classifier, obtaining accuracies of 90% and 80% for 

pathologic and normal sounds classification, respectively.  

Finally, the features calculated from all the databases 

were separated and presented in each auscultation area in 

a 3D-graph where a visible separability is shown. Results 

suggest that some noise associated with valve dysfunction 

is reflected in the entropy values. Besides, results show that 

information in each area is different and the analysis of the 

four areas might improve the classification when there is a 

pathology. 

. 

1. Introduction 

According to the World Health Organization (WHO), 

cardiovascular diseases are the leading cause of death in 

the world. Nowadays, there are sophisticated techniques 

that help physicians to diagnose the functioning of the 

heart. However, these might not be available to the whole 

population in public services or patients must wait long 

periods of time to have their tests [1,2,3,4]. For this reason, 

it is necessary to provide auxiliary signal processing 

techniques for the detection of abnormalities in the cardiac 

valves as it has been addressed in other works [2,3]. 

phonocardiography (PCG) and electrocardiography (ECG) 

are low cost and non-invasive techniques that can help to 

monitor the mechanical activity and electrical activity of 

the heart, respectively [3,4]. As shown in Figure 1, PCG is 

a technique used to record the mechanical activity of the 

heart where the main sounds, S1 and S2, and murmurs can 

be detected [4,5, 6]. 

In this work, a simultaneous recording and analysis of 

four main auscultation areas (aortic, pulmonary, tricuspid, 

and mitral) are proposed, where two goals are pursued: 1) 

to test if the use of four channels increases the probability 

of detecting the abnormality in any of the heart valves, and, 

2) to test if there is any difference of the extracted 

parameters on each auscultation areas. 

 

 
Figure 1. A. PCG signal with window segmentation. B. ECG 

signal simultaneously recorded with PCG. 

 

As it has been proposed in previous works [3,4,7], the 

variations that exist between the normal and abnormal 

heart sounds allow to calculate features that can be 

distinguished and used in automatic classification. 

However, classification techniques must be accompanied 

by signal processing techniques to clean the raw signals, 

making possible the segmentation of heart sounds into 

cycles and then identifying S1 and S2 to find 

abnormalities. 

 In Section 2, the procedure to extract features in the 

PCG recordings and classification of sounds into normal 

and pathologic is presented. It is also presented the PCG 

database description. Section 3 shows the results of the 

methodology and, Section 4 and 5 exposes a discussion and 

conclusion, respectively. 

   

2. Methodology 

In this section, the feature extraction of three parameters 

and classification of normal and pathologic heart sounds 

from the PCG database are described.  

 

2.1. Database 
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The PCG database belongs to a set of signals that 

include normal and abnormal sounds which were acquired 

at 2000 Hz, using the electronic system described in [2]. 

The sound signals have been cut in segments of 10 

seconds, making a total of 480 segments, separated in sets 

of five signals, containing the four auscultation areas 

sounds and the ECG signal. The characteristics of this 

database are described in Table 1, where the kind of 

pathologies is shown. 

The database was used raw, with no digital filtering and 

the parameters were extracted for each of the auscultation 

areas. Besides, 20 signals were selected randomly from the 

whole set of the four auscultation areas, 10 normal and 10 

pathologic, to be classified and the results are compared to 

the classification carried out per auscultation area. 

 

Table 1. Description of segments in each class. 
Description of the database. 

Subject Segments Age (years) 

Normal 240 22-31 (24.15±2.13) 

Aortic regurgitation 98 

16-77 (59.6±25.15) 
Aortic stenosis 52 

Mitral regurgitation 48 
Tricuspid regurgitation 32 

 

2.2. Time-Dependent Entropy (TDE) 

The TDE described in [8,9,10] has been used in the 

characterization of different biological signals, such as 

EEG and ECG. The analysis of the TDE proposed in [8], 

carries out an estimation of the uncertainty between the 

discrete values of the signal with the calculus of the 

Shannon Entropy. The estimation of the signal 𝑥(𝑡) is 

calculated using shifting time windows, defined in 

Equation (1), with size 𝑤 and shifting 𝑑, where 𝑥𝑖 is the 

discrete values of the signal with probabilities 𝑝𝑖 , 𝑚 

indicates the index of each window, 𝑝𝑖
𝑚 is the Probability 

of the Mass Function (PMF) per window and 𝐿 is the 

number of windows. The result of the associated entropy 

to each probability is defined in Equation (2). 

 

𝑊(𝑚; 𝑤, 𝑑 )  =  {𝑥(𝑘), 𝑘 = 1 +  𝑚𝑑, … , 𝑤 +  𝑚𝑑}   (1) 

 

𝐻(𝑚) = − ∑ 𝑝𝑖
𝑚𝐿

𝑖=1 ∗ log(𝑝𝑖
𝑚)  (2) 

 

Where it must be fulfilled 𝑤 ≤
𝐾(𝐾−𝑤)

𝑑
∈ 𝑁 y 𝑀 =

𝐾−𝑤

𝑑
. From 𝑚 = 0 up to the last window 𝑚 =

𝐾−𝑤

𝑑
. 

 

2.3. Spectral Entropy (SE) 

The SE technique, introduced in [11], is an estimation 

that uses Power Spectral Density (PSD) as a function of 

Probability Density and, alike the TDE, it is carried out 

through shifting windows as defined in Equation (1). The 

SE has been used to describe different time series as 

proposed in [11,12], used to describe sleep stages or 

epileptic seizure in ECG signals, providing satisfactory 

results because of the bandwidth of such events is well 

defined and relatively narrow. However, in PCG signals, 

the frequencies cover a wider range and the normal events 

such as S1 and S2 are overlapped in frequency with the 

abnormal, such as murmurs. To calculate the SE, the 

Discrete Fourier Transform (DFT) is used. Then, the PSD 

is calculated with the Equation (3) and the 𝑃𝑘
𝑚 with 

Equation (4). Finally, the SE is calculated with Equation 

(5) for each window 𝑤𝑘, where 𝑃𝑘
𝑚 represents the PMF, 𝑚 

the window index and 𝑝𝑘 its probability. 

 

𝑆𝑚(𝑤𝑘) = |𝑋𝑚(𝑤𝑘)|2         (3) 

 

𝑃𝑘
𝑚 =

𝑆𝑚(𝑤𝑘)

∑ 𝑆𝑚(𝑤𝑗)𝑤
𝑗=1

                    (4) 

 

𝑆𝐸(𝑚) = − ∑ 𝑃𝑘
𝑚𝐿

𝑘=1 log (𝑃𝑘
𝑚)                  (5) 

 

2.4. Feature extraction 

The procedure of feature extraction is presented in 

Figure 2. Three parameters are extracted from the raw PCG 

signals, one in the time domain and two more in the 

frequency domain and they are used for the classification. 

The preprocessing step consists of the window 

segmentation of the signals, then these segments follow 

two different paths: 1) time-domain analysis with TDE and 

2) frequency domain analysis with SE and PD. In the 

second step, the entropies were calculated for each window 

of a signal and for both estimations the window duration 

was defined as 0.2 seconds with an overlap of 0.1 seconds 

between them, as shown in Figure 1 with a solid line and 

dotted line tagged as Window 1 and 2, respectively. The 

mean of the TDE for all windows is taken as one of the 

input parameters for the classification. Whereas in the 

frequency domain two parameters are extracted: the mean 

of the SE for all windows and the mean of dominant values 

of each window of the PD taken from SE analysis as is 

shown in Figure 2. 
 

 
Figure 2. Diagram of PD, TDE and SE extraction from heart 

sound. 
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3. Results 

The result of the entropy calculus obtained from the 

shifting windows is depicted in Figure 3 with red lines, in 

left and right columns for normal and pathologic, 

respectively.  

According to the TDE technique, the largest values are 

obtained when the differences in consecutive amplitudes 

increases, that means, when the data changes abruptly. In 

this way, the S1 and S2 events are enhanced in the major 

changes of amplitude as is observed in Figure 3A. Unlike 

the normal sound, the pathologic has some noise associated 

with valve dysfunction and this is reflected in the entropy 

values. From Figure 3B, it is possible to deduce that the 

differences between the amplitudes are more uniform than 

normal sound, it means that the entropy in the pathologic 

signal presents constant changes but they are not sudden. 

Therefore, it is not possible to identify if the peaks 

correspond to S1 or S2, contrary to the situation in the 

normal signal. 

Opposite of TDE, SE analyses the time series as a 

statistic distribution that, at the same time gives, as a result, 

a signal whose amplitude is non-dependent on the input 

signal amplitude, as observed in Figures 3C and 3D.  

 

 
Figure 3. A. Normal sound and Dependent-Time Entropy, B. 

Abnormal sound and Dependent-Time Entropy, C. Normal sound 

and Spectral Entropy, D. Abnormal sound and Spectral Entropy. 

 

As it can be seen, TDE has related straight away with 

the time series shape, but the SE depends on the 

distribution of the PD, which can be interpreted as 

normalized Shannon Entropy value, where the amplitude 

value in the time series does not affect the final result of 

SE. From Figure 3, it is observed a slight difference 

between one feature and the other, however, when 

quantitative analysis is carried out, the results of TDE, SE 

and PD are significant, so the values for the normal and 

pathologic signals can be used as classification parameters. 

Figure 4 shows a 3D graph from the three parameters 

extracted, where each axis corresponds to one parameter. 

Each point represents one of the 20 segments randomly 

selected. These results show that the variations in the 

signals and the changes in their entropies, provide ranges 

that allow the separation of the two classes. A classification 

has been done using the Nearest Neighbours algorithm 

(KNN) with k=4 nearest neighbours and the number of 

classes is two. The input parameters and classification 

results are shown in Figure 4 where the elements inside the 

circles represent the classified data. The accuracy 

percentage obtained in the classification for the 20 

randomly selected segments of signals is 90% for the 

pathologic and 80% for the normal.   

 

 
Figure 4. K-NN Classifier for random signal selection. 

 

 
Figure 5. 3D graphs for each auscultation area with the extracted 

parameters: PD, TDE and SE. 
 

According to the graphs in Figure 5, the separability 

exists for the calculated parameters, however, some data 

cannot be classified correctly since their nearest 

neighbours belong to the other class. This phenomenon 

might be happening for two reasons: 1) In presence of 
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pathologies that affect, for instance, the mitral valve the 

recording on the aortic area is the less useful to describe 

the murmur since it is the furthest position from the mitral 

valve, which can be verified in Figure 5. That is, not all the 

auscultation areas provide the same information and a 

pathologic sound can be classified as normal if the wrong 

position is analysed; 2) the entropy values are calculated 

on the raw signal, without previous digital pre-processing 

to attenuates noise. This cleaning process was not carried 

out since the bandwidth of the main sounds is partially 

overlapped with that of the murmurs. 

 

4. Discussion 

The results shown in Figure 5, give the premise that the 

multidimensional analysis can still be explored with 

different signal processing and classification techniques. 

Comparing to previous works, the processing 

techniques describe here do not require pre-processing, 

however, if applied, they might improve the separability 

results.  

Work has to be done considering multidimensional 

techniques and to compare the results of each auscultation 

area depending on the pathology. But the results shown 

here give an approximation for the detection of auxiliary 

automatic detection of valve abnormalities with a low-cost 

system to be applied in first-level hospitals were 

cardiologist is not available.  

The methodology for automatic classification of sounds 

into normal and pathologic was described and results are 

presented. The TDE, SE and PD are proposed as input 

parameters for the classification technique KNN and the 

use of SE had not been reported before in the analysis of 

heart sound signals. 

 

5.  Conclusion 
 

Results show that the data can be separated using this 

methodology and comparing results when analysing the 4 

areas recorded simultaneously promising results to show 

that they provide more information and might improve the 

correct classification since not all areas provide the same 

information for all the pathologies. Therefore, the 

methodology can be used in education to assess 

auscultation abilities by using it as auxiliary support. 

The classification presents 90% of efficiency for the 20 

segments randomly selected. However, it is necessary to 

test it in a larger database and to analyse results on each 

auscultation area for different pathologies. Therefore, the 

preliminary results demonstrate that recording the four 

auscultation areas simultaneously provide more 

information than only one area showing that the 

information extracted is different on each auscultation 

area, which indicates that the pursued objectives are 

correct and further exploration will improve the 

classification efficiency.  
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