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Abstract

In this work, we establish the novel concept of detection
quality indices (DQI) for the assessment of non-invasive
fetal heartbeat detections. We grouped the DQIs in four
categories concerning the detection properties they ad-
dress and used these DQIs as features to classify correct
detections and two detection errors with a decision tree.
Our classifier was able to distinguish between correct de-
tection and two detection errors (fl = 0.90). By exclud-
ing the detection errors, we were able to improve the error
of time-domain heart rate variability parameters and ap-
proximated entropy compared to manual detection by 35
percentage points on average in a first clinical test setting.

1. Introduction

Non-invasive fetal ECG (fECG) is a promising technol-
ogy for long-term monitoring of pregnancies and thus the
early detection of fetal abnormalities. One challenge of
most importance is the detection of fetal QRS complexes.
Due to many works in this field, several high-performance
QRS detection algorithms exist in the literature. But still,
there are some detection errors, that occur regularly as a re-
sult of temporal changes in signal quality [1]. A common
strategy is to optimize the QRS detector in the way that
detection errors occur less often. In this work, we chose
an alternative approach by classifying the QRS detentions
as valid or as one of two types of errors. This was imple-
mented by using designed features and a decision tree to
understand the classifier’s behaviour better. Later we ap-
prove the clinical benefit of this method on our ongoing
Fetal Autonomic Cardiovascular rEgulation (FACE) study.

2. Materials and Methods

In this work, we used a subset of the FACE study. Fe-
tal QRS complexes were detected with the evolutionary
fetal QRS detector (classical detector) described by An-
dreotti et al. [2]. This detector works with a naive Bayes
approach and is highly robust against noise. However, in
some cases, it fails to detect the fetal QRS complexes but
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instead detects peaks introduced by noise or residuals of
the maternal QRS complexes. To take this into account we
categorized detections in: valid (fORS), noise peak (noise),
and maternal QRS complex residual (mRES).

For the classification, we used indices that measure the
quality of a single detected beat and referred them as De-
tection Quality Indices (DQI). The idea derives from the
work on Signal Quality Indices (SQI), which are widely
used, in the field of ECG and fECG [2-4]. SQIs are usu-
ally used to assess the quality of a signal. All DQIs used in
this work a summarized in Table 1. To the best knowledge
of the authors, only two SQIs for fECG are currently avail-
able that can measure the quality of a single beat detection
(cSQI and xSQI [2-4])).

If the detections are categorized, the invalid detections
can be excluded. In a further step, an enhanced fetal QRS
detector could be designed based on the classifier’s met-
ric. In this work, we focus on the filtering approach, by
exclusion.

2.1.  Signal Quality Indices

xSQI measures the extravagance by comparing a series
of fQRS peaks to the power of the surrounding signal [3,4].
We chose a window of 60 ms as relevant for fetal QRS
complex to capture the full QRS complex independent of
the week of gestation (WOG) [5]. By comparing every
beat with the surrounding 350 ms. We referred to this pa-
rameter as xDQIL.

¢SQI characterizes the conformity of a beat series com-
pared to an averaged fQRS template achieved by Pearson
correlation [2]. In this work, we defined cSQI considering
a single beat detection as cDQI,,.

2.2. Novel Detection Quality Indices

aDQI defines the agreement of maternal heart rate and
fetal heart rate as the ratio at the time of every detection.
Hence, the heart rates were calculated from the RR inter-
vals for the full measurement and were linear interpolated.
cDQIp; is based on cDQI,. The template of cDQI, is
naive. Therefore, we exchanged the way of building the
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template by the procedure described in [6]. This proce-
dure is based on time delay estimation to shift the QRS
detections to temporally adjust annotations. The used Im-
proved Woody’s Method displaces annotations in a way
that the correlation of annotations surrounding signal seg-
ments is maximized. This approach considers not only the
peak of the QRS complexes but also the morphology' and
thus the template is more robust to small detection errors.
We also used the first and second derivative of the template
and its correlation with the current QRS complex result-
ing in two additional DQIs. For reasons of comparison ,
we did this procedure not only with the cDQI;, but also
with the cDQI,,. The derivatives are labelled as cDQI}, .
(cDQI) for the initial template, cDQI . (cDQI') for the
first derivative and so on.

dDQI characterizes the change in fetal heart rate, calcu-
lated by the second derivative of the heart rate time series
for each fetal QRS complex. The idea is, that false detec-
tions should be followed by an atypical change in the fetal
heart rate.

nDQI characterizes the number of fetal QRS detections
overlapping with maternal QRS complex detections. A
similar concept was used in the iSQI [3] and miSQI [2].
iSQI is defined as the percentage of beats detected in one
lead, also detected in another lead. miSQI is defined as
1—iSQI, comparing fQRS complexes and maternal QRS-
complexes (mQRS). This definition is depending on fetal
and maternal heart rate. Thus, we defined nDQI as the
cohens-« of the agreement of mQRS and fQRS in a cer-
tain window [7]. The agreement was defined as an fQRS
complex in an acceptance-interval to an mQRS complex.
nDQI is defined in Equation 1.

nDQ[:w (1)
1—=po

Dm, f Tepresents the fraction of agreement. The proba-
bility of random agreement pg is defined by the sum of all
acceptance intervals divided by the total window length. In
this work, we used an acceptance-interval of 25 ms and a
window of 10 seconds.

2.3. Data

The used data originate from the FACE study which is
currently in progress at the University of Leipzig Medical
Center in cooperation with the HU Berlin and the TU Dres-
den. The study was approved by the committee of ethics of
the University of Leipzig Medical Center (357/17-ek). The
fetal ECG signal was recorded as described by Andreotti
et. al [4]. Our measurement protocol included paced slow

L1TDE could also be used to refine the initial fQRS detections, but in
this work we do not use the displacement information.

respiration, paced fast respiration, and an introduced loss
in blood pressure. The measurement begins with a 10 min
interval of rest. After all interventions, there is a 5 min
interval of rest.

As test and training dataset for the classifier, we used 14
measurements of 11 healthy pregnant women. At the week
of gestation 22 to 28 (mean 24.6) and age 20 to 40 (mean
30.5) that revealed detection errors. We carefully assigned
the previously defined detection categories to automated
QRS detections. We randomly assigned the measurements
to training and test set and picked random beats for train-
ing (n = 8,796) and test set (n = 3,768), with equal size
for each category. The decision tree was trained in scikiz-
learn with a maximum depth of five and a minimal leave
size of 30 to prevent overfitting [8]. The method was fur-
ther evaluated by comparing the classical and the filtering
approach (augmented detector) with manual annotations.
We used the last 5 minutes of the rest interval of two mea-
surements of one healthy subject (WOG 22 and 25, age 24)
and evaluated the heart rate variability (HRV) [9].

2.4. Statisics

To evaluate the DIQs, we tested the difference of in-
dices by a two-sided t-test and calculated the effect size
as the Spearman correlation coefficient (p), after ensuring
for normal distribution. The effect sizes can be used, as a
measure for the information expressed by this index. An
absolute p of 0 would indicate non-effect, an absolute ef-
fect of 1 indicates a strong effect. The feature importance
was assessed by the Gini coefficient [10].

Table 1. Overview of all used DQIs in this work.

DQI description origin
aDQI fHR/mHR for every fetal Beat this work
cDQI},.  conformity to QRS template this work
cDQL,,. conformity to first derivative of QRS template this work
¢DQL,.  conformity to second derivative of QRS template  this work
cDQI, conformity to QRS template [2]
cDQI, conformity to first derivative of QRS template this work
cDQL;, conformity to second derivative of QRS template this work
dDQI second derivative of fHR this work
nDQI fQRS complexes close to mQRS complexes this work
xDQI extravagance of QRS complex [3,4]

3. Results

3.1. Evaluation of the DQIs

The results of the correlation analysis between the DQIs
are shown in Figure 1. dDQI and nDQI contained no
strong correlation with other DQIs. Thus they contain
more unique information about the detection or none at all.
The cDQIs were highly correlated.
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Figure 1. Spearman correlation matrix of the DQIs for all
values from the test and training dataset.

To characterize the value of every DQI for each category
we considered the spearman correlations between all cate-
gories. The results are shown in Table 2. All DQIs except
dDQI and xDQI showed a p-value smaller than 0.001 and
thus show a significant difference between the groups.

aDQI yielded exceptional high effect sizes (up to p =
—0.83). This suggested that DQI is a measure of fQRS de-
tections similar to mQRS detections. It was therefore plau-
sible that this DQI is capable of distinguishing between
fORS and mRES (p = 0.47). We conducted a deeper exam-
ination of the data and found that the used detector indeed
tends to favour mRES if no fORS is found.

xDQI yield their highest effect by comparing fQRS and
mQRS, even if the effect sizes are still low (-0.17).

The two classes of cDQIs showed similar power.
cDQI,, yielded higher effect sizes for fORS vs noise and
noise vs mRES and fORS vs mRES, but cDQIp; yield only
0.05 smaller effect sizes. Hence, we considered both cate-
gories of DQIs as beneficial. The results are in accordance,
with the categories we proposed earlier (Figure 1).

Hence, we grouped the DQIs in four categories: infor-
mation about the ration of fetal-maternal heart rate (aDQI),
the similarity of fQRS and mQRS (nDQI), morphologi-
cal information (cDQIs) and extravagance of a detection
xDQI). dDQI does not contain any relevant information.

3.2. Evaluation of the Classifier

Our results showed that the developed classifier can dis-
tinguish between the given category (accuracy, precision,
recall and f1 > 0.90 for all categories, cohens x = 0.85).
We also checked the feature importance of the DQIs. nDQI
has the highest importance (0.76). This was plausible,
due to the previously discussed tendency of the detector
to favour mRES if no fORS is found. cDQI,, was also im-
portant (0.17). The novel cDQL.,. and the xDQI had also

TDE

Table 2. Effect size as the Spearman-correlation coefficent
(p) and the results of testing for non correlation indicated
by a two tailed p-value. *** stands for p < 0.001.

DQI JORS vs noise JORS vs mRES noise vs mRES
p-value  p p-value  p p-value  p

aDQI R 0.83 0.02 0.03 ok 0.47
cDQI,,,. R 0.24 w043 k0,11
cDQL,,, wE o -0.49 wE 2059 Rk 20.08
cDQIL . ko 20.56 k(.51 2006
cDQI, w2028 wE 2048 20,12
cDQI, k- 0.51] k- 20.61 wE - -0.09
cDQL, - 0.60 wEE (.55 - .0.07
dDQI 091 0.00 0.09 -0.02
nDQI ok 0.40 wEE - -0.09
xSQI 047  -0.01 wE 2006

significant importance, but their absolute impact is much
smaller (0.02 and 0.04). All other DQIs yielded a Gini co-
efficient less than or equal 0.01.

3.3. Comparison with Manual Annotation

We compared two measurements of a healthy pregnant
subject that we annotated manually. The augmented de-
tector found 97 % or more of the manually annotated beats
and excluded up to 2 % of false detections. In both mea-
surements, the excluded beats where predominant classi-
fied as noise. Up to 3 % of the beats annotated manually
were not detected by the augmented detector.

A comparison of HRV parameters calculated from the
resting periods of each measurement are shown in Table
3 for all three fQRS detection methods. The minor ex-
clusions of beats had a clear impact on the error of HRV
parameters. To compare the HRV parameters we calcu-
lated the relative difference of each HRV parameter for
the classical and the augmented detections compared to the
manual annotations and found a decrease for the following
HRV parameters: SDSD (0.50 to 0.15), SDNN (0.80 to
0.15), and Approximated Entropy (ApEn) (0.50 to 0.10).
The triangular index (TRI) was robust to the exclusion of
beats and yields consistent results for all detection meth-
ods. This is a promising result since we just excluded up
to 2 % of invalid beat detections and not take further steps
to find QRS complexes in the areas of exclusion.

Table 3. Comparison of HRV parameters calculated form
RR intervals of the classical detector, the augmented de-
tector, and the manual anotations.

classical augmented manual
WOG 22 25 22 25 22 25
SDSD 0.02 003 007 038 006 033
SDNN | 0.02 0.02 005 038 006 024

ApEn 0.44 041 038 025 040 0.16
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Figure 2. Comparison of mean and standard deviation of
cDQI,, and cDQIrpg for introduced detection errors (i =
0 ms, o =50 ms, n = 37,000).

4. Discussion

In this work detection quality indices (DQIs) were in-
troduced and established. We categorized the DQIs in
four independent classes of information: ration of fetal-
maternal heart rate, the similarity of fQRS and mQRS de-
tections, the extravagance of detection, and morphological
information. By training a decision tree, we were able to
distinguish between correct detected fQRS complexes and
two detection errors. We found that the classical detector
could be improved by a better evaluation between fQRS
and mQRS.

Correlation analysis indicated that all cDQIs are highly
correlated. Thus we compared all by a synthetic dataset,
generated with fecgsyn [11]. The comparison results in
a random detection error, shown in Figure 2 because we
expect the TDE to have a significant impact on random de-
tection errors. In ¢cDQI' and cDQI?, the position of the
true QRS complex is more clear for the cDQIL,,;. We con-
clude that the novel cDQI,; estimates the exact position
of the fQRS complex better than the cDQI,,.

By comparing manual QRS annotation and augmented
detection for two fECG measurements of pregnant woman,
we found the first evidence of benefits for the calculation
of HRV parameters. Therefore, we conclude that DQIs are
useful to understand the behaviour of a QRS detector better
and thus can improve the quality of QRS detections.

Further studies should take into account other detectors,
and examine the effect on HRV parameters further. Fur-
thermore, the indices introduced in this work could be used
in the design of an enhanced fetal QRS detector.
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