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Abstract 

Left arm and left leg lead-wire interchange (LA-LL) is 

difficult to detect because a normal ECG still appears 

normal with such interchange. The aim of this study is to 

design and evaluate a LA-LL interchange algorithm based 

on serial ECG differences. 

A large database of ECGs (n=146,000) was separated 

into serial ECG pairs for the patients with multiple ECGs. 

There were 89,600 patients and 25,700 had multiple 

ECGs. The average beats of serial ECG pairs, QT region 

only, were subtracted to construct a single 16 bit greyscale 

ECG image. The STT region was normalized for heart rate 

by a linear correction. The LA-LL positive set was created 

by simulated interchange in the current ECG. We split the 

ECG images randomly into training (70%), test (20%) and 

validation (10%) subsets. With the goal of high specificity, 

class weights were biased toward low false positives for 

training.  

The CNN sensitivity (SE) and specificity (SP) were 

84.5% and 99.5% respectively. Assuming a prevalence of 

LA-LL reversal of 0.5% in clinical practice, the estimated 

PPV and F1 were 46% and 60%. 

Detecting LA-LL reversal is the most challenging in 

common lead-wire interchanges. Compared to the Kors 

algorithm with SE/SP of 18/99.5%, this algorithm shows a 

significant boost in sensitivity with the same specificity.  

 

 

1. Introduction 

Lead-wire interchange in diagnostic 12-lead ECG is a 

well-known quality issue for ECG recordings. The most 

common lead-wire interchange is the connection of the left 

arm wire to the right arm electrode and right arm wire to 

left electrode [1]. Interchanges can contribute to incorrect 

diagnosis. There are many ECG clinical case reports 

showing the problem ECG with an undetected lead-wire 

reversal, the misdiagnosis, and then the appearance of the 

ECG once repeated without the interchange. Greenfield 

found a left arm and left leg reversal led to a potential 

diagnosis of recent inferior myocardial infarction or 

possibly pulmonary embolism [2]. Bailey analysed inferior 

STEMI with LA-LL interchange and found consistent 

detection of lateral STEMI [3]. Karur found a LA-LL 

interchange mimicking new ST elevation in leads I and 

aVL [4].   

In the process of developing lead reversal algorithms 

and database collection, various authors have estimated the 

prevalence. Hedén found that the arm lead reversal is the 

most common with other lead reversals following at lower 

levels according to Table 1 [1]. 

 

Table 1. Prevalence of common lead-wire interchanges 

Lead-wire interchange Prevalence (%) 

RA-LA 0.43 (47/11,009) 

RA-LL 0.29 (32/11,009) 

LA-LL 0.07 (8/11,009) 

Chest lead, cumulative 0.23 (25/11,009) 

Total  1.0 (112/11,009) 

 

Several different approaches have been employed for 

automated detection of limb lead interchange and 

precordial lead interchange. Most algorithms treat within 

limb lead changes and within precordial lead changes. 

Those are the most common and easy to simulate. One 

algorithm approach is to exploit the redundancy in ECG 

since leads are highly correlated. A second main approach 

is machine learning using ECG measurements such as 

frontal plane axis and per lead P-wave amplitude. A third 

approach is to use an end to end machine learning solution 

with the ECG signal as input to a deep neural network. 

Kors and Feild independently built algorithms based on the 

redundancy between ECG leads as the basis for high 

performing algorithms [5,6].  Hedén used ECG features as 

input to a neural network to detect limb and precordial lead 

interchanges [1,7]. Han used both ECG lead correlation 

and ECG measurements as input to a machine learning 

approach [8]. 

The left arm / left leg (LA-LL) interchange is 

particularly difficult to detect both by expert readers and 

by algorithm. When looking at other algorithms, the 

difficulty is evident by the difference in performance of the 

LA-LL compared to other reversals. Kors found 

sensitivities between 87% and 99% for limb reversals but 

only 18% for LA-LL [6]. Hedén and Han did not publish 

numbers for LA-LL presumably because that interchange 

is so difficult to detect.  
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In the development effort for lead reversal detection by 

Feild and later by Han, the ECG database was created from 

serial ECGs so that any true reversals could be excluded. 

Lead reversals were simulated only using ECGs free from 

lead-wire interchange. For that effort, all reversals were 

simulated. The use of serial ECG as a form of truth for lead 

reversal database development sparked the idea for the 

current study, detection using serial ECGs. 

 

2. Methods 

2.1. Study database 

    The study database consists of ECGs from patients with 

multiple ECGs in a large single-center database collected 

over a period of 3 years. There were 146,000 ECGs in the 

database, but only a subset of 25,700 patients (of 89,600 

total) had multiple ECGs resulting in 56,582 ECG pairs. 

The test (10%), training (80%) and validation (10%) 

datasets of ECG pairs were randomly assigned. The 

training and validation sets were used in algorithm 

development, but the hold out test was only used for testing 

once training was complete. Each ECG current/previous 

pair was used in the LA-LL positive and LA-LL negative 

sets. The LA-LL positive set was created by simulating the 

LA-LL interchange in the current ECG of each pair. The 

LA-LL interchange can be simulated by the operations 

indicated in Table 2 below. 

 

Table 2. Mathematical operations to simulate the LA-LL 

lead-wire interchange. 

Original lead …becomes 

I II 

II I 

III -III 

aVF aVL 

aVL aVF 

 

 

2.2. Algorithm 

    The algorithm for detection of left arm and left leg lead-

wire interchange was based on subtracting the average 

beats of the current and previous ECGs. Both current and 

previous ECGs were pre-processed to create a time aligned 

average beat to reduce the effect of artefact. To account for 

the difference in heart rates, the QT interval of the previous 

ECG was normalized to the heart rate difference with the 

current ECG using the Hodges heart rate correction for QT 

interval [9]. The Hodges correction is a linear correction 

which allows for proportional resampling across the 

interval from QRS end to end of T-wave. Figure 1 shows 

an example of a patient’s previous and current ECG 

average beats with a simulation of the LA-LL interchange 

in the previous ECG. When there are no significant clinical 

changes from previous ECG to the current ECG, the 

residual after subtraction is usually small. Figure 2 

illustrates how well previous and current ECGs match 

across the study database by calculating the ratio of root-

mean-square (RMS) difference divided by average RMS. 

With an LA-LL interchange, the difference in limb leads is 

in the same order of magnitude as the original signal while 

the precordial leads are unaffected and the precordial lead 

Figure 1. Average beat from the current (solid) and 

previous (dotted) ECGs with limb leads in Cabrera order. 

From the chest leads current and previous are very similar. 

The difference in the limb leads is due to a simulated LA-

LL lead-wire interchange 
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residual is still small. For ease of use with machine 

learning tools, the average beat residual was converted to 

tall narrow images, 12 leads wide and 300 samples tall at 

500 sample/sec. 

    A simple VGG style convolutional neural network [10] 

was designed and trained to classify LA-LL interchange 

with an image input and a single output. The Cabrera lead 

order was used to keep highly correlated leads adjacent. 

Three convolutional layers were employed, each with a 

“relu” activation, batch normalization and drop out. Next 

came a 1000 neuron fully connected layer, “relu” 

activation, batch normalization, drop out and a final single 

neuron layer with sigmoid activation to generate the LA-

LL output. 

 
Figure 2. Histogram of how well current and previous ECG 

average beats match by lead. Quality of match is given the 

ratio of RMS difference (current – previous) divided by 

RMS average. The peaks near 0.3 mean that commonly the 

RMS voltage of the previous/current difference is 30% of 

the RMS voltage of the current average beat. 

2.3. Testing 

    The algorithm performance was tested using sensitivity, 

specificity and estimated positive predictive value. The 

positive predictive value was estimated because the true 

prevalence is a fraction of 1% while the training prevalence 

was 50%. 

 

3. Results 

The CNN algorithm detected the LA-LL interchange on 

the hold out test set with a sensitivity of 84.5% and a 

specificity of 99.5%. At the expected prevalence of 0.5%, 

the estimated positive predictive value and F1 score were 

46% and 60% respectively. 

 

 

3. Discussion 

The algorithm presented here is the first to detect lead-

wire interchange based on serial ECG. Although it is a first 

for an algorithm, verification of lead reversal by serial 

ECG is common in manual ECG reading. In database 

development for lead-wire reversal detection, verification 

of interchange or lack of interchange is done by serial ECG 

comparison. Haar used serial ECGs to detect acute 

myocardial infarction by subtracting features calculated 

from previous and current ECG average beats [11]. 

Sbrollini used the same method to detect heart failure in 

post-infarction patients [12]. In both cases, a neural 

network was used to implement a classifier based on the 

difference features. 

This is not the first published article to train a neural 

network to detect lead reversals that can be simulated. 

Hedén et.al. wrote two papers to introduce the use of neural 

networks for lead reversal detection [1] [7]. There are 

several differences comparing the present work to 

Hedén’s. First, Hedén’s network used well known ECG 

features as input from a single ECG. The present study uses 

images created directly from the waveforms, rather than 

features. Second, we use serial ECGs. Third, the present 

work takes advantage of deep learning neural networks 

which were not available at the time Hedén’s papers were 

published. Finally, Hedén did not publish the performance 

of the LA-LL interchange. In earlier papers, our group also 

did not publish results for LA-LL because the performance 

was mediocre and therefore not worth attempting in 

clinical practice. 

Kors published a paper on a wholly different method 

exploiting the redundancy in ECG signals [6]. The Kors 

algorithm detected the LA-LL interchange with a 

sensitivity and specificity of 18% and 99.5% respectively 

which was much lower than the detection performance of 

other lead-wire interchanges. Other lead wire interchanges 

had sensitivities in the 90s. The present work dramatically 

improves the LA-LL interchange compared to the Kors 

99.5

99.5

85

18

Serial ECG

Kors

Sensitivity Specificity
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Figure 3. Comparison of the serial ECG and Kors 

algorithm performance for LA-LL lead-wire interchange in 

terms of sensitivity (lighter gray) and specificity (darker 

gray). 

Page 3



algorithm as can be seen in Figure 3, but with the cost of 

adding the requirement of a previous ECG. 

The serial ECG method is limited by availability of a 

previous ECG, however, a record of previous ECGs is 

common for patients with cardiac complaints [13]. The 

method is also limited by occurrence of new ECG changes 

expressed in the limb leads. As long as the clinical change 

is expressed in the chest leads as well at a level above day 

to day variation, the algorithm can presumably limit false 

positives because the CNN has learned normal chest lead 

variation. This is also an argument for a more complex 

machine learning model. The model must learn the 

difference between normal variation, change due to lead 

reversal in addition to health condition change. Finally, the 

impact of clinical change or time between previous and 

current ECGs on LA-LL interchange detection was not 

quantified. On the other hand, no selection was performed 

to remove ECGs representing a clinical change. 

 

3. Conclusion 

Detecting LA-LL lead-wire interchange is the most 

challenging in common lead-wire interchanges. Most 

algorithms for lead-wire interchange neglect the LA-LL 

case. Compared to the Kors algorithm with SE/SP of 

17.5/99.5% for LA-LL interchange, this algorithm shows 

a significant boost in sensitivity (18% to 85%) with the 

same specificity. The downside of the serial ECG based 

algorithm is the requirement for a previous ECG. 

However, viewing the previous ECG is common practice 

when manually interpreting ECG. 
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