Improving Localization of Cardiac Geometry Using ECGI
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Abstract

Introduction: Electrocardiographic imaging (ECGI) re-
quires a model of the torso, and inaccuracy in the position
of the heart is a known source of error. We previously pre-
sented a method to localize the heart when body and heart
surface potentials are known. The goal of this study is to
extend this approach to only use body surface potentials.

Methods: We used an iterative coordinate descent op-
timization to estimate the positions of the heart for sev-
eral consecutive heartbeats relying on the assumption that
the epicardial potential sequence is the same in each beat.
The method was tested with data synthesized using mea-
surements from a isolated-heart, torso-tank preparation.
Improvement was evaluated in terms of both heart local-
ization and ECGI accuracy.

Results: The geometric correction resulted in cardiac
geometries closely matching ground truth geometry. ECGI
accuracy increased dramatically by all metrics using the
corrected geometry.

Discussion: Future studies will employ more realistic
animal models and then human subjects. Success could
impact clinical ECGI by reducing errors from respiratory
movement and perhaps decrease imaging requirements, re-
ducing both cost and logistical difficulty of ECGI, widen-
ing clinical applicability.

1. Introduction

Electrocardiographic imaging (ECGI) is a tool for the
noninvasive assessment of cardiac electrical activity us-
ing body surface potential (BSP) signals that has been ap-
plied clinically to successfully diagnose a number of car-
diac dysfunctions.[1] ECGI, like many imaging modali-
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ties, leverages the biophysics that dictate how source sig-
nals project to measurement locations (solving a‘forward’
problem) and uses this relationship to solve for the reverse,
i.e., estimate features of the source, given remote mea-
surements (solving an ‘inverse’ problem).[2] The forward
problem in electrocardiography depends on the geometry
of the torso and organs and their conductivities. Solutions
to this forward problem are known to be well behaved in
the sense that small errors in sources or models tend to re-
sult in small effects on the solution. On the other hand, the
associate inverse problems are ill-posed, i.e., small errors
in the inputs, such as errors in the position of the heart,
have a significant impact on the accuracy of solutions.[3]
Hence, constructing an accurate forward model is critical
to enabling an accurate ECGI solution. However, errors
in cardiac location remain a mostly unaddressed source of
error for both clinical and experimental uses of ECGI.[4]
The position of the heart changes during respiration and
due to shifts in position of the patient. These errors can-
not be easily addressed with improved medical imaging
or segmentation and there is little expectation of address-
ing them using procedural changes, such as requiring the
patient to maintain breath holds. Thus directly addressing
this source of error could improve the accuracy of all ECGI
implementations, both clinical and experimental.

There have been a number of research efforts to address
the cardiac localization error problems. These approaches
seek to leverage properties of ECGI such as changes to
the L-curve of the ECGI inverse problem with changes
in geometry, or differences between simulated and mea-
sured BSPs.[5] Our group previously localized the heart
using an optimization based approach that assumed avail-
ability of potentials on both the body surface (BSPs) and
the heart surface (electrograms, EGMs).[6, 7] The cardiac
position was found by optimizing over a set of position pa-
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rameters to minimize the residual error between measured
BSPs and those simulated using the cardiac forward prob-
lem.[6,7] In this study, we addressed the scenario in which
only BSPs from several heartbeats and a nominal geometry
are available, with the goal of correcting the cardiac geom-
etry using entirely non-invasive measurement techniques.
We quantified the results of our reconstructions, both in
terms of the cardiac position and ECGI solutions.

2. Methods

Our geometric correction framework for cardiac posi-
tion is divided into two alternating main steps that are iter-
atively repeated: 1) estimating a new cardiac position as-
suming a candidate set of inverse EGMs (iIEGMs), and 2)
estimating new iEGMs assuming a candidate cardiac posi-
tion.

Estimating Cardiac Position: We parameterized the
location of the heart and estimated the correct position us-
ing a forward problem based optimization described by
Coll-Font et al..[6] Briefly, the heart is assumed to be a
rigid body and its position within the torso is parametrized
by 6 degrees of freedom: x, y, and z position of the cen-
troid of the heart, and pitch (side to side swing), yaw (ro-
tation of the septal axis about vertical axis of the torso),
and roll (rotation about the septal axis). Given a set of
candidate iEGMs, we used an interior point trust region
optimization implemented in MATLAB to estimate a new
position of the heart by minimizing a cost function whose
value was the root mean squared error (RMSE) between
measured and forward computed BSPs. The forward com-
puted BSPs were generated using the boundary element
method (BEM) for extracellular potentials.

Estimating inverse EGMs: Given a candidate set of
position and orientation parameters, we used a standard
ECGI method, with Tikhonov 2nd order regularization to
estimate iEGMs. However, if we used a single cardiac ge-
ometry and BSPs from a single heart beat then the resulting
position estimate would be to not move the heart at all. To
avoid this trivial solution we used a sequence of BSPs from
multiple heartbeats to estimate iEGMs for one beat, with
the assumption that any differences between beats in the
recorded BSPs are the result of differences in cardiac posi-
tion, and that the source EGMs are the same for each beat.
As a consequence, in the Estimating Cardiac Position step
we can then use the beat-to-beat variations in BSPs and
the estimated iEGMs to optimize for the cardiac position
for each heartbeat.

To summarize, the algorithm iteratively repeats the car-
diac position and iEGMs estimation steps to determine the
cardiac position for each heartbeat. The full algorithm is
described in Algorithm 1.

Dataset: To evaluate this method, we generated a syn-

Algorithm 1: Cardiac Position Estimation
Goal: Optimized cardiac geometries per beat
Initialize cardiac position per set of BSPs provided;
Estimate initial iEGMs;
while iteration count < max iteration count &
solution not converged do
pair each beat’s BSPs with the calculated iEGMs;
estimate cardiac position for each beat’s BSPs;
estimate new iIEGMs using each beat’s BSPs and
new cardiac positions;
end

thetic dataset in which EGMs, BSPs and cardiac position
were known for a set of 100 heartbeats. The EGMs and
basic geometric data came from an isolated-heart and torso
tank preparation described previously.[8,9] Briefly, an iso-
lated heart was suspended within a torso-shaped tank filled
with electrolyte solution and 192 embedded electrodes in
contact with the solution. A rigid pericardiac cage record-
ing array equipped with 256 silver-silver chloride elec-
trodes enclosed the isolated heart. Signals were recorded
continuously from the electrode arrays at 1 kHz using a
custom acquisition system during a variety of interventions
including ventricular pacing. Signals were filtered, base-
line corrected, and segmented using PFEIFER, an open-
source signal processing tool.[10] Cage and torso electrode
positions were recorded using a mechanical digitizer.

We selected a single left ventricularly paced heart beat
and used the EGMs recorded from the 256 electrodes of
the pericardiac cage as ground truth EGMs. We generated
100 sets of BSPs from these EGM recordings by numeri-
cally moving the cardiac cage within the torso geometry,
calculating a BEM solution, and adding Gaussian noise at
an SNR of 30dB. The parameters of the cardiac positions
for each BSP are shown in Figure 1(black diamonds). The
nominal position of the cage corresponded to its digitized
position. During optimization, the cardiac geometries for
all 100 beats were initialized to this nominal position at
Pitch = Yaw = Roll = X = Y = Z = 0, which we subse-
quently considered the ‘unoptimized’ position.

Analysis: We measured the success of our geometric
correction framework by both its ability to reconstruct the
cardiac position as well as its ability to improve the estima-
tion of iIEGMs as compared to the unoptimized position.
Position reconstruction accuracy was assessed according
to two metrics: mean per-electrode distance, and centroid
distance. Mean per-electrode distance is the average Eu-
clidean distance between electrode positions in the ground
truth and optimized cardiac geometries. Centroid distance
is the distance between the centroids of the ground truth
and optimized cardiac geometries. We also assessed the
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position reconstruction qualitatively by comparing ground
truth to optimized locations.

We quantified differences in ECGI solutions before and
after geometry optimization and compared these solutions
to solutions obtained using the ground truth cardiac po-
sition. For each of the 100 beats, the cardiac geometry
was placed at either the unoptimized, optimized, or ground
truth positions. Forward matrices were computed with
BEM, and iIEGMs were estimated with an inverse solver.
We selected the Tikhonov 2nd order regularization param-
eter using the Frobenius norm (across an entire beat) L-
curve method.[2]. We quantified differences in the iEGMs
using spatial correlation (SC) averaged over all time in-
stances, temporal correlation (TC) averaged over all elec-
trodes, the root mean squared error (RMSE), as well as
carrying out qualitative visual examination of results.[8]

3. Results

Geometric Reconstruction: Our geometric optimiza-
tion framework was able to reconstruct the cardiac posi-
tion with high fidelity. The 6 position parameter recon-
structions (Figure 1 red circles) generally agreed closely
with the ground truth parameters (black diamonds), espe-
cially for the rotation parameters. The mean per-electrode
distance averaged over all 100 reconstructed positions was
8.50 mm with a standard deviation of 0.12 mm, and the av-
erage centroid distance was 6.43 mm with a standard de-
viation of 0.56 mm. Qualitative assessment suggested a
constant small offset between ground truth and optimized
geometries for all 100 beats.
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Fi gure 1. Ground truth (black diamonds) and reconstructed (red dots)
cardiac position parameters for each parameterized degree of freedom.
Pitch, yaw, and roll are defined (in radians) about a septal axis, X, y, and
z translations are in mm’s.

ECGI Improvement:Geometry optimization resulted
in more accurate inverse solutions as compared to using
the unoptimized geometries. The metrics shown in Ta-
ble 1 confirm that the optimization resulted in inverse so-
lutions that closely resembled the solutions obtained us-
ing the ground truth positions. Figure 2 shows a compar-

SC TC RMSE
Pt | 0.96 +0.001 | 0.96 £ 0.002 | 0.24 £ 0.006
Popt | 0.88 £0.002 | 0.93 £0.003 | 0.31 £ 0.005
PO 0.52+£0.27 | 0.51+£0.27 1.14 £ 0.58

Table 1. ECGI solution accuracy metrics for different cardiac loca-
tions. PO uses the nominal unoptimized cardiac position, Pt uses the
ground truth cardiac positions, and Popt uses the optimized positions.
RMSE is in millivolts, spatial correlation (SC) and temporal correlation
(TC) are unitless.

ison between the inverse solutions using unoptimized, op-
timized, and true positions. We see that even in the worst
case scenario, as defined by minimum spatial correlation,
the optimized geometry resulted in better inverse recon-
structions than the unoptimized geometry.

4. Discussion and Conclusions

The results presented here support the hypothesis that
our algorithm is able to reconstruct the cardiac position
using BSPs and that these positions improve the inverse re-
constructions of the EGMs. This method reliably corrected
the cardiac geometry in our synthetic dataset to within an
average of 8 mm (based on per-electrode distance) and re-
sulted in improvements in the inverse reconstruction over
the unoptimized positions seen in Table 1.

The reconstruction accuracy varied for each parameter,
with pitch, yaw, roll, and vertical (z) position showing no-
ticeably better agreement with the ground truth parameters
than x and y directions (Figure 1). We notice that poorer
reconstruction tended to occur at the extrema of the range
of motion (and for yaw also around the center of the range).
We speculate that the difficulty in reconstruction yaw val-
ues near zero may be due to a singularity in the coordi-
nate system resulting in similarity of yaw to roll rotations
when pitch is also near zero. However, despite this unre-
solved error, we still observed that optimized cardiac po-
sitions, measured with per-electrode-distance, were closer
to the ground truth than the unoptimized positions. The
optimization not only improved the accuracy of the ECGI
solutions but also dramatically decreased the variability in
ECGI accuracy for all measured statistics (as assessed by
the reduced standard deviations after optimization). The
standard deviations of the accuracy metrics after optimiza-
tion were comparable to the standard deviations found us-
ing the true cardiac positions. The remaining discrepancy
between the ECGI solutions of the optimized and true car-
diac geometries is likely due to the residual geometric error
that our algorithm was unable to correct.

This study was limited by the use of a synthetic dataset.
The simulation of simple, in-phase periodic variation of
the 6 parameters may not be realistic. The dynamic range
may not be adequate to describe motion in patients. There
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Figure 2. Identified best and worst case potential reconstructions visualized on the cardiac geometry. Values displayed are in millivolts. The cardiac
geometry was flattened for visualization, and a time point at the peak of the QRS was selected for visualization. The first column shows the ground
truth measured EGM. The second through fourth columns show the inverse reconstructions using Unoptimized, Optimized, and True cardiac positions
respectively. Best case reconstruction (top row, SC = 0.88) and the worst case reconstruction (bottom row, SC = 0.87) were based on inverse solutions

found using optimized geometries.

also remains some geometric error, suggesting room for
improvement in the optimization. However, the ability of
the algorithm to reduce geometric error and improve ECGI
solution accuracy demonstrates proof of concept. Our next
steps will be to use more realistic synthetic and experi-
mental datasets. We expect that including temporal beat-
to-beat constraints such as assuring that positions of neigh-
boring beats are similar or allowing for a fitting of a res-
piratory cycle may improve the accuracy of reconstruction
for respiratory motion. We predict that our method will be
able to improve the accuracy of ECGI solutions in all con-
texts in which the cardiac geometry is moving relative to
the torso, a scenario common in both clinical and exper-
imental settings. We also theorize that this same method
could be used to correct for other errors in the geomet-
ric model such as conductivity values in an inhomogenous
torso model. The development of this geometric correction
method may lead to additional benefits such as utilizing
less accurate but also less expensive imaging modalities
such as echocardiography to capture the geometric model
needed for ECGI, or even allow the use of template cardiac
geometries to replace patient specific imaging.
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