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Abstract

Cardiac simulations have become increasingly accurate
at representing physiological processes. However, simu-
lations often fail to capture the impact of parameter un-
certainty in predictions. Uncertainty quantification (UQ)
is a set of techniques that captures variability in simula-
tion output based on model assumptions. Although many
UQ methods exist, practical implementation can be chal-
lenging. We created UncertainSCI, a UQ framework that
uses polynomial chaos (PC) expansion to model the for-
ward stochastic error in simulations parameterized with
random variables. UncertainSCI uses non-intrusive meth-
ods that parsimoniously explores parameter space. The re-
sult is an efficient, stable, and accurate PC emulator that
can be analyzed to compute output statistics. We created
a Python API to run UncertainSCI, minimizing user inputs
needed to guide the UQ process. We have implemented
UncertainSCI to: (1) quantify the sensitivity of computed
torso potentials using the boundary element method to un-
certainty in the heart position, and (2) quantify the sensi-
tivity of computed torso potentials using the finite element
method to uncertainty in the conductivities of biological
tissues. With UncertainSCI, it is possible to evaluate the
robustness of simulations to parameter uncertainty and es-
tablish realistic expectations on the accuracy of the model
results and the clinical guidance they can provide.

1. Introduction

Computational electrocardiographic models and simula-
tions include many input parameters, such as the conduc-
tivities of the tissues, geometry of the organs and tissues,
and their relative positions [1, 2]. Inherent in each model
parameter are errors associated with the practical necessity
to simplify model assumptions and details. Such errors
can arise from natural variations over patient populations,

simplification or abstraction of the geometry or underlying
mechanisms, as well as a lack of precision when obtaining
the parameters. Quantification and control of these errors
through uncertainty quantification (UQ) provide sensitiv-
ity information, which is a critical component when evalu-
ating the relative impact of parameter variation on the so-
lution accuracy. [3, 4]

Many methods exist for simulation-based assessment of
sensitivity, and the implementation depends on the com-
plexity of the underlying system. Monte Carlo, perhaps
the best known and simplest approach, samples parameter
space in order to explore the impact of parametric varia-
tion; however, this approach sometimes requires millions
of simulations to achieve a forward UQ prediction of ac-
ceptable accuracy, and hence this strategy frequently has a
prohibitive computational cost. Two simplifications of this
approach are (1) brute-force methods, which under-sample
the parameter space and interpolate between the resulting
values; and (2) range-finding experiments, which evaluate
the outer extremes of the parameter spaces, which are as-
sumed to represent the total variation. The major weakness
of the latter approaches is that their underlying assump-
tions of linearity is not always correct.[5] In contrast to
the approaches described above, the generalized polyno-
mial chaos-stochastic collocation (gPC-SC) method is an
effective sampling method that exploits assumptions con-
cerning the mathematical nature of the stochastic field or
process of interest–—assumptions that are often justified
mathematically and practically–—to minimize the number
of samples that are needed for the computation of accurate
statistics.[6]

There are existing software toolboxes that perform UQ
tasks.[7, 8] However, these toolboxes are created specifi-
cally either as standalone packages or customized for non-
bioelectric field applications. In order to use these tools
for biomedical applications, the simulation environment
needs to be coupled via a computer script. Such high-
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Figure 1. Effect of the heart position on torso surface potentials. Sensitivity maps using bounds described previously (top left to right), of translation
left and right, translation front and back, and translation up and down, respectively, and (bottom left to right), swinging left to right, yaw of the septal
axis, and rotation along the septal axis, respectively.

level scripting results in computational speed penalties and
makes validation challenging as algorithms are built by
third-party developers. Furthermore, current toolboxes of-
ten have limited capabilities and are missing the benefits
of more modern and effective UQ techniques.

We developed UncertainSCI, a software that tightly cou-
ples recently matured UQ algorithms and paradigms by
means of a noninvasive Python interface, resulting in a
nimble, efficient, and robust set of UQ tools that are spe-
cialized for biolectric field simulations. To evaluate the
implementation of UncertainSCI, we have applied the soft-
ware to (1) quantify the variability in computed torso po-
tentials using the boundary element method (BEM) in re-
sponse to uncertainty in the heart position and orientation
via MATLAB, and (2) quantify the variability in computed
torso potentials using the finite element method (FEM) in
response to uncertainty in the conductivities of each bio-
logical tissue via our custom, open-source problem solv-
ing environment, SCIRun.[9] These two implementations
produced similar results to what was reported in our pre-
vious studies using gPC-SC, which did not utilize Uncer-
tainSCI.[5, 10]

2. Methods

Sensitivity Quantification through gPC-SG: We quan-
tify forward parametric uncertainty in cardiac simulations
using polynomial Chaos expansions (PCE). [6] Such an
approach attempts to approximate the dependence of a

quantity of interest (QoI) on a finite number of random pa-
rameters via a multivariate polynomial function of those
parameters. This approximation is an emulator for the
associated forward problem. Once this approximation is
constructed, then statistics of the QoI, including the mean,
variance, and parameter sensitivities, are computed via
straightforward, computationally efficient manipulations
of the polynomial. One non-intrusive strategy to construct
this polynomial dependence is through least-squares ap-
proximation, where data for the least-squares problem is
collected through an ensemble of simulations of the for-
ward model. UncertaintSCI uses PCE methods to quantify
forward uncertainty, and employs a particular experimen-
tal design on which to collect simulation data.

For a fixed number of data points, the stability and
accuracy of the PCE emulator is known to depend on
the experimental design. UncertainSCI constructs this
design through the procedure of Weighted Approximate
Fekete Points (WAFP), which computes a geometrically
unstructured experiment as a special type of D-optimal
(determinant-maximizing) design. More precisely, the de-
sign is computed through a greedy algorithm that itera-
tively adds parametric samples that maximize a matrix
determinant. The maximization is computed over a dis-
crete candidate set; generating this candidate set via Monte
Carlo sampling from the distribution of the parameter is
known to produce suboptimal sets. UncertainSCI com-
putes the candidate set by sampling from the induced dis-
tribution, which exploits a concentration of measurable
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phenomena to provably increase the quality of the candi-
date set. Sampling from the induced distribution for in-
dependent parameters is computationally efficient, having
complexity that is linear in the dimension (number of pa-
rameters).

Once the experimental design is created through the
WAFP procedure with induced distribution sampling, an
ensemble of forward simulations is collected from the sim-
ulation software, and UncertainSCI produces a PCE emu-
lator through a (weighted) least-squares procedure. From
this least-squares procedure, UncertainSCI also can com-
pute residuals and cross-validation metrics, and can adap-
tively tune the expressivity of the PCE emulator based on
a user-prescribed tolerance and/or computational budget.
Applications: In order to assess the feasibility, utility, and
performance of UncertainSCI in the context of biomedical
simulation, we performed uncertainty quantification with
two classic cardiac bioelectric forward models. The first
example used UncertainSCI to quantify the effect of vari-
ability in cardiac position on the electrocardiographic po-
tentials, the ECG’s. This approach was based on a previ-
ous study by Swenson et al..[5] Briefly, we parameterized
the motion of the heart into six parameters according to
the cardiac position scheme implemented by Coll-Font et
al.:[11] (1) translation left and right, (2) translation front
to back, (3) translation up and down, (4) pitch side to side,
(5) yaw of the septal axis, and (6) rotation along the septal
axis. We then utilized data and geometries collected from
isolated-heart torso-tank experiments, and constructed an
objective function in Python that took the six motion pa-
rameters, as well as their bounds and inputs, and called on
a MATLAB library to move the cardiac geometry, calcu-
late the bioelectric potentials on the tank surface using the
BEM, and return the resulting time signals.

The second example was also based on research in car-
diac forward problems, and relied on varying the conduc-
tivities of tissue using a finite element approach to solve for
torso potentials, as described by Geneser et al..[10] Using
data from similar experiments to the first study but from
the intact thorax, we segmented the heart, torso, and lung
volumes from MRI scans using Seg3D (www.seg3d.
org). We then constructed a volume mesh and used the
FEM to estimate torso potentials with SCIRun. Access
to UncertainSCI came through a Python script that used
SCIRun’s Python interface to modify the conductivity val-
ues of the lungs and torso, and provided the resulting torso
surface potentials as the inputs to UncertainSCI.

3. Results

First, we present the results of the sensitivity analysis
on variability in heart position on torso potentials (Fig-
ure 1). The sensitivity map for swinging left to right, yaw

of the septal axis and rotation along the septal axis show
large regions of variability, with maximum sensitivity val-
ues of 0.82, 0.52, and 0.60, respectively. Such motion
could occur when the heart shifts during the respiratory
cycle.[5, 11] Translation of the heart, more typical of a pa-
tient turning in bed, produced smaller regions of variabil-
ity, with maximum sensitivity values of 0.28, 0.37, 0.43,
for translation left and right, translation front and back, and
translation up and down, respectively. Second, we present
the results of the sensitivity analysis on variability in con-
ductivities (Figure 2). The sensitivity maps for the lung
conductivities and torso conductivities show large sensitiv-
ity coefficients overall, with a minimum value of 0.46 and
a maximum value of 0.97. The maximal sensitivity values
are positioned on the lower region of the torso surface.

Figure 2. Effect of the conductivities on torso surface potentials. Sen-
sitivity maps using bounds described previously, for torso conductivity
(left) and lung conductivity (right).

4. Discussion

The implementation and execution of bioelectric sim-
ulations requires a number of assumptions for input pa-
rameters, and understanding the effect of these assump-
tions is critical when assessing the resulting model out-
puts. While there exist a range of methods for assessing
such model responses, e.g., brute force, Monte Carlo, and
range-finding methods, the emergence of statistical meth-
ods such as polynomial chaos expansion allows for a more
robust assessment of uncertainty, while mitigating the high
computational cost due to parsimonious sampling tech-
niques. However, implementations of these UQ methods
have their own challenges. UncertainSCI bridges the gap
between these advanced UQ methods and bioelectric simu-
lation and modeling software by packaging UQ implemen-
tations in a noninvasive Python toolkit that wraps the nec-
essary techniques and facilitates testing of various models.
Because of the noninvasive nature of UncertainSCI’s UQ
implementation, it is able to interface with a variety of soft-
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ware packages and does not require labor-intensive custom
implementations for each different modeling environment.

To demonstrate the utility of UncertainSCI, we per-
formed two UQ analyses based on previously published
research from our group [5, 10]. The first analysis was on
variability in BEM solutions with changes in cardiac posi-
tion, implemented in MATLAB. We were able to leverage
the existing MATLAB-Python API to allow for easy wrap-
ping of the MATLAB forward BEM model such that Un-
certainSCI could easily and automatically drive the sam-
pling of the model. We were able to replicate previous
findings that rotation of the heart resulted in larger sensi-
tivity in the forward solution output.[5] In the second anal-
ysis, we implemented a forward model using the FEM in
SCIRun, and assessed the response of computed torso po-
tentials to variability in conductivity of the torso and the
lungs. Again due to an existing interface between SCIRun
and Python, we were able to easily create a wrapping script
to run our forward models and return the results to Uncer-
tainSCI, without having to modify the modeling environ-
ment. This approach represents an substantial extension to
the original research, which examined the forward model
in only a 2D slice of tissue.[10] This extension into three
dimensions was enabled by the efficient and validated al-
gorithms in SCIRun along with the flexible interface in Un-
certainSCI. The results show a complex pattern of sensitiv-
ity in response to torso and lung conductivity changes that
was not apparent from the original study. These two ex-
amples demonstrate the ability of UncertainSCI to enable
UQ analysis in any modeling environment that is Python
compatible.

UncertainSCI offers a highly efficient, portable imple-
mentation of UQ to a broad range of bioelectric simula-
tion applications. In such problems, there is a pressing and
increasing need to understand the uncertainty stemming
from uncontrolled variability in model parameters. UQ
enables the evaluation of deviations from average physi-
ological conditions, informing researchers about the need
for more accurate measurements or refinement of the un-
derlying mechanisms implemented in the model system.
With UQ support, simulation scientists, engineers, and
physicians will be able to make innovative use of com-
puter modeling capabilities that provide the statistical con-
fidence necessary to apply them to patients.
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