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Abstract 

Atrial fibrillation (AF) is the most common cardiac 
arrhythmia causing morbidity and mortality. The 
segmentation of the left atrium (LA) is very important for 
image-guided ablation of AF and quantification of left 
atrial fibrosis. However, manual segmentation is labor-
intensive and highly subjective. Therefore, the automatic 
segmentation of the left atrium is of great significance. In 
this study, we developed a U-Net based network for 
automatic segmentation of the left atrium. Due to the high 
computational cost and GPU memory consumption of 3D 
deep learning networks, a 2D network was used for 
learning. However, the 2D network only learned the 
features in 2D slices. The spatial context information of 
the images was not considered and used, so bidirectional 
convolutional long short-term memory (LSTM) was 
combined to obtain the context information in the z-axis 
direction. This study aimed to design a two-step method 
based on U-Net and bidirectional convolutional LSTM for 
the automatic segmentation of the left atrium from LGE-
MRI. The model was trained and tested on the dataset of 
the 2018 Atrial Segmentation Challenge. The dice 
coefficient obtained by the method was 0.906. By 
combining the context information between image slices, 
the segmentation results were optimized. 

 
 

1. Introduction 

Atrial fibrillation is the most common persistent 
arrhythmia, which has a great risk of causing heart failure, 
vascular embolism, and even sudden death [1]. Its early 
diagnosis and treatment can help improve the function of 
the heart and the prognosis of patients, and effectively 
reduce the mortality of patients. In order to understand 
the anatomical structure of the atrium better, assist in 
interventional surgery and postoperative observation, the 
segmentation of the atrium is a key step. Images from late 
gadolinium enhancement magnetic resonance imaging 

(LGE-MRI) are widely used to evaluate the structure and 
function of the heart because of its advantages such as no 
radiation damage, the ability to perform heart and blood 
vessel imaging without contrast agents and can be used to 
detect and quantify the scar tissue in the atrial wall. 
Although it is possible to reconstruct the atrium and 
explore its structure by manually segmenting the images, 
it often requires professional domain knowledge and lots 
of labor costs [2]. Therefore, the research on the 
automatic segmentation method of the left atrium has 
important scientific significance and application value. 

There is considerable variability across subjects' 
anatomical structures of LA, that is, highly individualized 
differences in atrial shape and size [3]. The image noise 
and the dynamic movement of the heart will also cause 
great difficulty in image segmentation. At the same time, 
the volume of the atrium is smaller than that of the 
ventricle, and the atrial myocardium is thinner. The left 
atrium segmentation is much more challenging. The 
segmentation methods of medical images can be divided 
into image-driven methods based on no prior knowledge 
or weak prior knowledge, model-driven methods based 
on strong prior knowledge, and deep learning methods [4]. 
For image-driven methods, there is thresholding, region 
growing [5], clustering, etc. For model-driven methods, 
there are atlas-guided methods [6,7], statistical shape 
model based methods like ASM [8] and AAM, etc. Deep 
learning networks such as CNN are also often used for 
image segmentation tasks and have achieved good results. 
Among them, the research of the left atrium segmentation 
method has also made good progress. In [9], the author 
summarized the research status of the deep learning 
method in the field of the left atrium segmentation from 
LGE-MRI. 

In this study, we used a deep learning method for the 
automatic segmentation of the left atrium from LGE-MRI. 
The method combined the characteristics of U-Net 
network and bidirectional convolutional LSTM, and 
realized effective segmentation of the left atrium by a 
two-step learning.  
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2. Methods 

2.1. Preprocessing 

Due to the inconsistent image size, we cropped the 
images and adjusted them to the same size (256ൈ256) 
suitable for input to the network. The ground truth was 
processed so that the grayscale value of the left atrium is 
1, and the grayscale value of the rest area is 0. We 
performed z-score standardization on the data. The 
formula is as follows: 

𝑋∗ ൌ
𝑋 െ 𝑋ത

𝜎
ሺ1ሻ 

where 𝑋 is the original data, 𝑋ത is the mean value of the 
original data, and 𝜎  is the standard deviation of the 
original data. The z-score standardization operation scales 
the original data to a specific interval. The distribution of 
the processed data 𝑋∗  satisfies the normal distribution N 
(0,1). The mean value of the data is 0, and the variance is 
1. 

Due to the scarcity of data and the high cost of 
labelling, before training the network, we performed the 
data augmentation on the training data. Data 
augmentation such as rotation, translation and zoom was 
performed on the images in a random combination of data 
transformation, so that different epochs can obtain 
different training data and increasing noise data, which 
can improve the robustness and generalization ability of 
the model. 

 
2.2. U-Net 

The medical image dataset tends to only have a small 
amount of labelled data. The boundary of the target 
structure is often blurred, and the gradient is complex. 
The U-Net network [10] was first presented at MICCAI 
2015. For the learning of the small dataset, a great 
segmentation result can also be obtained. Simultaneously, 
it can supplement the contextual semantic information of 
the segmentation target at the high level of the network 
and provide more detailed information such as gradient 
for segmentation at the low level of the network through 
skip connection and concatenation. Therefore, it is very 
suitable for the segmentation of medical images. In this 
study, our basic structure adopted the U-Net network. 

The U-Net network adopts a U-shaped structure. The 
first half of the network is an encoder process with four 
coding blocks, and each coding block contains two 3ൈ3 
convolutions with stride 1. After each convolutional layer, 
the rectified linear unit (ReLU) is used as the activation 
function. Each coding block uses a 2ൈ2 max-pooling 
layer for down-sampling. The coding process performs 
four down-sampling. In the decoder part, the resolution of 
the features is restored to the resolution of the original 

images block by block through up-sampling. 
Correspondingly, there are four decoding blocks. Each of 
them contains two 3ൈ3 convolutions with stride 1 and 
similarly uses ReLU as the activation function. 

The skip connection structure of the network connects 
the shallow feature map output by each encoding block in 
the encoder path and the deep feature map input by the 
corresponding decoding block in the decoder path. The 
batch normalization layers were added to the network. 
The data can be normalized so that the training process 
can be speed up, and it increased the generalization ability 
of the model to a certain extent. Data augmentation and 
dropout regularization were used to prevent overfitting. 
All layers except the last layer used the ReLU activation 
function. The last layer of the network used the sigmoid 
activation function. Adam optimizer with a learning rate 
of 0.001 was selected for the learning. 

 
2.3. Bidirectional Convolutional LSTM 

Since only 2D slices were used for learning, the inter-
layer information in the z-axis direction of the images 
was not considered and used. The convolutional LSTM 
[11] can combine the spatial relationship of the input 
image sequence into the process of learning, and use 
context information to make up for those poor 
segmentation results. Therefore, we added the 
convolutional LSTM layer in the network to combine the 
information of the z-axis direction of the 2D slices, that is, 
the spatial correlation of the 2D slice sequence.  

The essence of convolutional LSTM is the same as 
LSTM. The difference is that convolutional LSTM adds a 
convolution operation. It can not only get the timing 
relationship, but also extract spatial features like a 
convolutional layer. The convolutional LSTM is defined 
as follows: 

𝑖௧ ൌ 𝜎ሺ𝑊௫௜ ∗ 𝑋௧ ൅ 𝑊௛௜ ∗ 𝐻௧ିଵ ൅ 𝑊௖௜ 𝐶௧ିଵ ൅ 𝑏௜ሻ
𝑓௧ ൌ 𝜎൫𝑊௫௙ ∗ 𝑋௧ ൅ 𝑊௛௙ ∗ 𝐻௧ିଵ ൅ 𝑊௖௙   𝐶௧ିଵ ൅ 𝑏௙൯

𝐶௧ ൌ 𝑓௧ 𝐶௧ିଵ ൅ 𝑖௧ 𝑅𝑒𝑙𝑢 ൬
𝑊௫௖ ∗ 𝑋௧

൅𝑊௛௖ ∗ 𝐻௧ିଵ ൅ 𝑏௖
൰  

𝑜௧ ൌ 𝜎ሺ𝑊௫௢ ∗ 𝑋௧ ൅ 𝑊௛௢ ∗ 𝐻௧ିଵ ൅ 𝑊௖௢ 𝐶௧ ൅ 𝑏௢ሻ
𝐻௧ ൌ 𝑜௧ 𝑅𝑒𝑙𝑢ሺ𝐶௧ሻ

ሺ2ሻ 

where 𝑋 is input, 𝐶 is cell output, 𝐻 is the hidden state, 𝑖 
is the input gate, 𝑓  is the forget gate, 𝑜  is the output 
gate, 𝜎 is the logistic function, ∗ is convolution operator 
and   is Hadamard product operator. 𝑊  denotes the 
weights. 𝑏 denotes the biases. Since the 2D image is 
related to the slices of both its upper and lower layers, 
here we use bidirectional LSTM to obtain the spatial 
information of the images. The sketch map of 
bidirectional LSTM is shown in Figure 1. 
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Figure 1. The sketch map of bidirectional LSTM. 
 

In this study, we used the bidirectional convolutional 
LSTM layer after the last up-sampling of the decoder part 
to combine the spatial relationship between high-
resolution features in adjacent 2D slices. The structure of 
the network is shown in Figure 2. 

 
Figure 2. The structure of the network. 

 
2.4. A Two-step Learning 

The complete learning process was achieved through 
the following two steps: 

Step1: The first learning step used all images 
containing the left atrium in the training data for network 
learning. The loss function used was binary cross-entropy. 
The formula is as follows: 

𝐿𝑜𝑠𝑠 ൌ െ𝑦 ∗ logሺ𝑦ොሻ െ ሺ1 െ yሻ ∗ logሺ1 െ 𝑦ොሻ ሺ3ሻ 
where 𝑦  denotes the ground truth, and 𝑦ො  denotes the 
predicted labels of the images. 

Step2: The second learning step used all images in the 
training data for network learning, in order to make the 
distribution close to the true distribution. The optimal 
parameters learned in Step1 were used as the initial 
parameters for the learning of Step2. The loss function 
used was the AC loss [12]. The AC loss can constrain the 
shape of the predicted labels, and the model parameters 
from Step1 can also make the learning of the AC loss 

more stable. The formula of the AC loss is defined as 
follows: 

𝐿𝑜𝑠𝑠 ൌ 𝐿𝑒𝑛𝑔𝑡ℎ ൅  ∙ 𝑅𝑒𝑔𝑖𝑜𝑛 ሺ4ሻ 
in which, 

𝐿𝑒𝑛𝑔𝑡ℎ ൌ න |∇𝑢|𝑑𝑠
஼

𝑅𝑒𝑔𝑖𝑜𝑛 ൌ න ሺሺ𝑐ଵ െ 𝑣ሻଶ െ ሺ𝑐ଶ െ 𝑣ሻଶሻ𝑢𝑑𝑥


ሺ5ሻ 

in which, 

𝑐ଵ ൌ න 𝑣 ∙ 𝑢𝑑𝑥/ න 𝑢𝑑𝑥

𝑐ଶ ൌ න 𝑣 ∙ ሺ1 െ 𝑢ሻ𝑑𝑥/ නሺ1 െ 𝑢ሻ𝑑𝑥
          ሺ6ሻ 

where 𝑢 denotes the predicted labels, and 𝑣  denotes the 
ground truth. 𝑐ଵ  and 𝑐ଶ  denote the internal and external 
energy respectively, that is, the energy of the foreground 
and the background correspondingly. 

 
3.  Dataset and Results 

The network was trained and tested on the dataset of 
the 2018 Atrial Segmentation Challenge. The dataset 
contains 100 cases of 3D images from LGE-MRI with a 
spatial resolution of 0.625mm × 0.625mm × 0.625mm. 
The raw MRIs are in grayscale and the segmentation 
labels are in binary. The grayscale value of the ground 
truth was processed as 0 and 1 before being input to the 
network. 

The dataset was split such that 60-patient data were 
used for training, and 40-patient data were used for 
validation and testing (20 sets respectively). There are 88 
slices in each data, and the size of each slice is either 
640ൈ640 or 576ൈ576. The dice coefficient was used to 
evaluate the results. The dice coefficient is essentially a 
measure of the overlap between the ground truth and the 
predicted label. The range of the value is between 0 and 1. 
That value is 1 means complete overlap. The formula of 
the dice coefficient is as follows: 

𝐷𝑖𝑐𝑒 ൌ  
2|𝐴 ∩ 𝐵|
|𝐴| ൅ |𝐵|

ሺ7ሻ 

where 𝐴 is the ground truth, 𝐵 is the predicted label, |𝐴 ∩
𝐵| is the intersection of 𝐴 and 𝐵,  |𝐴|, |𝐵| are the number 
of elements of 𝐴 and 𝐵 respectively. 

The dice coefficient obtained by the original U-Net 
network we built was 0.897. The two-step segmentation 
method that combined the U-Net network and the 
bidirectional convolutional LSTM was executed. The 
parameters of the model were adjusted and optimized. 
The evaluation was then performed on the 20 sets of data. 
The dice coefficient obtained by the proposed method 
was 0.906. Figure 3 shows the ground truth and predicted 
labels of four slices. The first column is ground truth, the 
second column is the predicted labels using only the 
original U-Net network we built, and the third column is 
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the predicted labels of the proposed method. It can be 
seen in the figure that after combining the bidirectional 
convolutional LSTM, the segmentation result was 
optimized through the context. 

 
Figure 3. Ground truth and predicted labels of four slices. 
Each row is for one slice, the first column is ground truth, 
the second column is the predicted labels using only the 
original U-Net network we built, and the third column is 
the predicted labels of the proposed method. 

 
4. Conclusions 

In this study, an automatic segmentation method of the 
left atrium from LGE-MRI was developed. The method 
performed a two-step learning combining U-Net and 
bidirectional convolutional LSTM to learn the 
segmentation model. At the same time, the AC loss was 
adopted to constrain the shape of the left atrium. The 
model was trained and tested on the dataset of the 2018 
Atrial Segmentation Challenge. The result showed that 
the method can combine the spatial context information 
of the images and obtain a good segmentation result. 

 
Acknowledgments 

The work is supported by the National Natural Science 
Foundation of China (NSFC) under Grants No. 61572152, 
61601143 and 81770328, the Science Technology and 
Innovation Commission of Shenzhen Municipality under 
Grants nos. JSGG20160229125049615 and 
JCYJ20151029173639477, China Postdoctoral Science 

Foundation under Grant nos.2015M581448. 
 

References 

[1] H. Calkins et al., “2012 HRS/EHRA/ECAS expert consensus 
statement on catheter and surgical ablation of atrial 
fibrillation: Recommendations for patient selection, 
procedural techniques, patient management and follow-up, 
definitions, endpoints, and research trial design,” Europace, 
vol. 14, no. 4, pp. 528–606, Apr. 2012. 

[2] R. S. Oakes et al., "Detection and quantification of left atrial 
structural remodeling using delayed enhancement MRI in 
patients with atrial fibrillation," Circulation, vol. 119, no. 
13, pp. 1758, 2009. 

[3] A. M. Maceira et al., "Reference left atrial dimensions and 
volumes by steady state free precession cardiovascular 
magnetic resonance," Journal of cardiovascular magnetic 
resonance, vol. 12, no. 1, pp. 65, 2010. 

[4] L. Wang et al., "Principles and methods for automatic and 
semi-automatic tissue segmentation in MRI data," Magnetic 
Resonance Materials in Physics, Biology and Medicine, vol. 
29, no. 2, pp. 95-110, 2016. 

[5] L. Zhu et al., “Automatic segmentation of the left atrium 
from MR images via variational region growing with a 
moments-based shape prior,” IEEE Trans. Image Process, 
vol. 22, no. 12, pp. 5111–5122, Dec. 2013. 

[6] I. Isgum et al., "Multi-Atlas-Based Segmentation with Local 
Decision Fusion—Application to Cardiac and Aortic 
Segmentation in CT Scans," IEEE Transactions on Medical 
Imaging, vol. 28, no. 7, pp. 1000-1010, 2009. 

[7] Z. Sandoval et al., "Multi-atlas-based segmentation of the 
left atrium and pulmonary veins," International Workshop 
on Statistical Atlases and Computational Models of the 
Heart, Springer, Berlin, Heidelberg, pp. 24-30, Sep. 2013. 

[8] H. C. van Assen et al., "Cardiac LV segmentation using a 3D 
active shape model driven by fuzzy inference," 
International Conference on Medical Image Computing and 
Computer-Assisted Intervention, Springer, Berlin, 
Heidelberg, pp. 533-540, Nov. 2003. 

[9] K. Jamart et al., "Mini Review: Deep Learning for Atrial 
Segmentation from Late Gadolinium-Enhanced MRIs," 
Frontiers in Cardiovascular Medicine, Jul. 2020. 

[10] O. Ronneberger et al., "U-net: Convolutional networks for 
biomedical image segmentation," International Conference 
on Medical image computing and computer-assisted 
intervention, Springer, Cham, pp. 234-241, Oct. 2015. 

[11] S. H. I. Xingjian et al., "Convolutional LSTM network: A 
machine learning approach for precipitation nowcasting," 
Advances in neural information processing systems, pp. 
802-810, 2015. 

[12] X. Chen et al., "Learning active contour models for medical 
image segmentation," Proceedings of the IEEE conference 
on computer vision and pattern recognition, pp. 11632-
11640, 2019. 

 
Address for correspondence: 
 
Ze Zhang 
Building of Integrated Labs, Harbin Institute of Technology, 
Harbin, China, 150001. 
zhangze568@yeah.net 

Page 4


