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Abstract

Kalman filtering has been successfully applied to elec-
trocardiographic imaging (ECGI) to improve the estima-
tion accuracy, especially when a ‘good’ training set of
epicardial potentials is available to estimate the prior
statistics. Most methods in the literature use previously
measured experimental data to obtain these training sets,
which would not be feasible in a clinical application. In
this study we explored the effectiveness of using simu-
lated epicardial potentials and the corresponding BSPs
for obtaining the prior models based on two approaches:
maximum likelihood (MLIF) and maximum a posteriori
(MAPIF) estimation. Our results showed that even using a
simple simulation method, and large margin in the initial
pacing location range (80mm here), simulated data can
be used for defining the prior models in the Kalman filter-
based-ECGI.

1. Introduction

Electrocardiographic imaging (ECGI) aims to recon-
struct the electrical activity of the heart based on multi-
electrode body surface potential (BSP) measurements and
a mathematical model relating the sources to these mea-
surements. This inverse problem is ill-posed; small distur-
bances in the BSPs yield large errors in the solutions. The
remedy for this ill-posedness is to apply regularization.

Statistical estimation methods have been applied suc-
cessfully for solving the inverse ECG problem [1-4].
These method have great flexibility to represent the data,
and they provide performance evaluation tools for quan-
tification of uncertainties and errors in the model. How-
ever, for an accurate inverse reconstruction, they require
“good” a priori information. It has been a great challenge
to obtain the said prior information, when we have limited
knowledge about the sources themselves.

In our previous studies, we applied the Kalman filter to
solve the inverse ECG problem. We used data from ani-
mal experiments to evaluate the statistical estimation meth-
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ods. In those studies, both the electrograms (EGM) and
the BSPs were available, thus the a priori Kalman filter
parameters were estimated from training sets consisting of
those measurements [3,4]. However, in a clinical applica-
tion, such measurements are unavailable. In this study, we
explore the use of simulated data (EGM and BSP) for con-
structing appropriate training sets, which then can be used
to estimate the desired a priori parameters.

2. Problem Definition

In the Kalman filtering approach to the inverse ECG
problem, the epicardial potentials are defined as the state
variables. Then, the problem can be formulated in a linear
state-space form as follows:

Vi = AXy + Vi, (1)
X1 = Fxg + wy, )

where x;; € RY and y, € RM denote the epicardial and
the body surface potential vectors at time k, respectively;
Vi € RM NN (Vk;O,R) aIlde S RN ~ N(Wk; O, Q)
correspond to measurement and process noises, respec-
tively; F is the NV x IV state transition matrix and A is the
M x N forward transfer matrix. Furthermore, the process
and measurement noises are assumed to be uncorrelated
with the state x;,.

Kalman filter is an optimal estimator used for recon-
structing the unobserved states of a system by using the
observed data. There are two stages in the Kalman filter.
In the first stage, the predicted state vector x|, and the
state covariance are estimated as:

Fxp_q1jk—1, 3)
FP,_11F" + Q. )

Xk|k—1

Prp—1 =

Second stage is about updating the predictions X1 and
P} x—1 by using the measurement vector yy to estimate
the state vector, X[k and the state covariance matrix, P K|k
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as follows:

Ki = Py 1AT(AP, AT +R)™H (5)
Xpe = Xpp—1 + Ke(yr — Axp—1), (6)
Pur = (I-KiA)Ppp_1, 7

where K, is the Kalman gain. In order to initialize the
Kalman filter at the first time instant and run the filter re-
cursively, the mean vector X; = X9 and covariance ma-
trix X7 = PO‘O, must be found. Furthermore, the state
transition matrix F, and the error covariances R and Q
also must be specified.

This study utilizes ML and MAP techniques to
estimate the unknown model parameter set ®@ =
{%1,21,F,Q,R}. A database which consists of epi-
cardial potentials X, = {x{.;-}¢—1.;, and corresponding
body surface potentials Yy, = {y%.;}e=1.1 are used by
the ML- and MAP-based parameter estimation algorithms.
Details of these methods can be found in [4].

3. Test and Training Sets

In this study we used data from experiments carried
out at the University of Utah, Nora Eccles Harrison Car-
diovascular Research and Training Institute (CVRTI) [5].
In these experiments, epicardial potentials were measured
from perfused and ventricularly paced dog hearts, which
were suspended in a human shaped electrolytic tank. Sam-
pling rate was 1000 samp/s, and the sock recording setup
consisted of 490 nodes. The body surface potentials (BSP)
were simulated from these measured epicardial potentials
by multiplying them by a forward transfer matrix, which
was calculated using the boundary element method (BEM)
[6] and adding white Gaussian noise at 30 dB SNR.

We assigned one beat from a single dog experiment as
the test beat for solving the inverse problem. We used two
different approaches for constructing the training set for
estimating the prior parameters:

e Measured TS: The electrograms measured in experi-
ments different from the test beat and the corresponding
BSPs were used to construct the first training set.

o Simulated TS: We used simulated electrograms and the
corresponding BSPs for this second training set. First the
3D transmembrane potentials (TMPs) were simulated in
an anisotropic heart using the Aliev-Panfilov model [7].
In these computations, the same set of simulation param-
eters were used, neglecting differences in the electrophys-
iology of different types of heart cells. The Auckland ex-
perimental heart model with 264477 myocardial nodes was
used for this computation [8]. Then, the corresponding
epicardial potentials were obtained by solving the forward
problem using the bidomain model and the finite element
method. Finally, the simulated EGMs were mapped onto
the Utah heart geometry using registration.
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Figure 1. Measured and simulated epicardial potential
data examples; isopotential maps and sample EGMs for
each data from the same node are depicted. TMPs for sev-
eral myocardial nodes were also illustrated.

The training set beats were paced from an 80 mm-
neighborhood of the pacing location of the test beat.

Figure 1 shows measured and simulated data examples,
paced from the same epicardial node. Isopotential maps
as well as electrograms for the same epicardial node (in-
dicated as a white dot on the heart) are presented. TMPs
from several nodes, which have similar morphology for all
heart nodes, were also included.
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Figure 2. Spatial CC value across time for all methods.

The vertical lines indicate the time instances for which the

epicardial maps are shown in figure 3.
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Figure 3. Sample epicardial maps at two different time
instants; ¢t =17 ms in panel A, and ¢t =84 ms in panel B.

4. Results

Reconstructed electrograms were evaluated using the
spatial (sCC) and temporal (tCC) correlation coefficients;
the activation times (ATs) were computed using a spatio-
temporal approach [9] and evaluated using Pearson’s CC;
pacing site localization accuracy was assessed based on the
localization error (LE).

Figure 2 shows the spatial CC values as a function of
time for all reconstructed EGM maps. The performance of
the Kalman filter-based methods outperformed Tikhonov
regularization for the first 60 ms of the activity. Through-
out most of the QRS region, both MAPIF and MLIF us-
ing the simulated TS had similar, at some instances even
higher sCC values compared to using the measured TS.
After about 90 ms, which is close to the end of the QRS
region, the performance of MLIF with the simulated TS
started to degrade.

Epicardial maps at two different time instants are given
in figure 3. These time instants are representatives from an
earlier time in the QRS (panel A, 17 ms) and a later time
in the QRS (panel B, 84 ms), as marked by vertical lines
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Figure 4. Panel A: Temporal CC values over the heart
surface from the LV and RV views of the heart. Four nodes
are markes as white dots corresponding to low tCC regions
on these maps. Panel B: Electrograms corresponding to the
marked low tCC nodes.

on the spatial CC plots of figure 2. Supporting the spa-
tial CC results, at 17 ms, all Kalman filter results outper-
formed Tikhonov regularization. At 84 ms, all maps had
similar distributions. Reconstructions using the simulated
TS had good fidelity to the original map; MLIF especially
had a comparable performance to the methods using the
measured TS. MAPIF with the simulated TS, on the other
hand, slightly smeared the wavefront.

Figure 4 shows the temporal CC values mapped onto
the heart surface (panel A) from two different views; top
and bottom rows correspond to the left (LV) and right (RV)
ventricles, respectively. Both MAPIF and MLIF using the
simulated TS had similar, at some nodes even higher tCC
values compared to using the measured TS. In the LV-view,
all Kalman filter methods outperformed the Tikhonov reg-
ularization. However, in the RV-view, there were small re-
gions with small and/or negative tCC values corresponding
to the same methods. Among the four Kalman filter-based
results, MAPIF with the simulated TS only dis not have a
low-tCC region around node 4. Two nodes from each view
were selected from low tCC regions, and the correspond-
ing EGMs were also plotted (panel B). The EGMs shown
here were representatives of the worst performances of the
methods; the remaining EGMs closely resembled the mea-
sured potentials, as indicated by the high tCC values.

The quantitative metrics are summarized in table 1.
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Table 1. Summary of quantitative metrics evaluated in this
study. These metrics are spatial CC, temporal CC, CC of
the ATs and LE (in mm). For sCC and tCC, the mean and
standard deviation values are listed.

’ \ Method \ Measured TS \ Simulated TS ‘

MAPIF 0.79 +0.10 0.80 = 0.12
sCC MLIF 0.74 £ 0.13 0.72 +£0.19
Tikhonov 0.67 £0.16
MAPIF 0.79 +0.25 0.82 +0.20
tCC MLIF 0.76 £ 0.27 0.77 £ 0.22
Tikhonov 0.79 £0.20
MAPIF 0.99 0.99
AT-CC MLIF 0.99 0.99
Tikhonov 0.99
MAPIF 8.94 6.36
LE (mm) MLIF 8.94 4.46
Tikhonov 8.94

High spatial and temporal CC values of the Kalman filter-
based methods using the simulated TS are also evident in
these average values. ATs for all methods closely matched
the true AT's, with 0.99 CC value. LE values with the sim-
ulated TS-based method were the lowest.

5. Discussion and Future Work

In this study, we used simulated data as training sets
to estimate the Kalman filter parameters. In these sim-
ulations, we did not take into account the heterogeneity
of the TMPs for different types of heart cells. Instead,
we used a simple generic TMP waveshape resulting from
global Aliev-Panfilov simulation parameters.

Our results showed that, even using a simple simula-
tion method, and large margin in the initial pacing location
range (80mm here), simulated data can be used for defin-
ing the prior models in the Kalman filter-based-ECGI.

However, this study included only a single test case, and
the BSPs were simulated rather than recorded simultane-
ously with the EGMs. This method needs further valida-
tion using more datasets, and especially measured BSPs.
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