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Abstract 

Linear ECG-lead transformations estimate or derive 
unrecorded target leads by applying a number of 
recorded basis leads to a so-called linear ECG-lead 
transformation matrix. The inverse transform of such a 
linear ECG-lead transformation performs a 
transformation in the opposite direction (from the target 
leads to the basis leads). The pseudo-inverse of a given 
transformation matrix can be used to perform such an 
inverse transformation. Linear regression based inverse 
transformation matrices are, provided that sufficient 
training data for their development is available, an 
alternative to pseudo-inverse matrices. The aim of this 
research was to compare the estimation performance of 
pseudo-inverse and linear regression based inverse 
transformations. This comparison was performed for two 
example inverse transformations.  The performance of the 
different transformations was assessed using root-mean-
squared-error (RMSE) values between the QRS-T 
complexes of recorded and derived leads. Typical mean 
RMSE values associated with the regression based 
approach were found to be approximately two thirds to 
half of the mean RMSE values achieved by the approach 
based upon the pseudo-inverse. Provided that sufficient 
data are available, linear regression should be used for 
the development of inverse ECG-lead transformation 
matrices. 

 

 
1. Introduction 

Linear ECG-lead transformations estimate or derive 
unrecorded target leads by applying a number of recorded 
basis leads to a so-called linear ECG-lead transformation 
matrix [1, 2]. The inverse transform of such a linear 
ECG-lead transformation performs a transformation in 
the opposite direction (from the target leads to the basis 
leads). The pseudo-inverse [3] of a given transformation 
matrix can be used to perform such an inverse 
transformation. A well-known example of such a pseudo-
inverse based inverse ECG-lead transformation matrix is 
the so-called inverse Dower transformation [4].  Linear 
regression based inverse transformation matrices are, 

provided that sufficient training data for their 
development is available, an alternative to pseudo-inverse 
based inverse ECG-lead transformation matrices.  
However, a comparison between the estimation 
performance of pseudo-inverse and linear regression 
based inverse ECG-lead transformations has, to the best 
of our knowledge, not previously been reported in the 
literature.  The aim of our research was to compare the 
estimation performance of pseudo-inverse and linear 
regression based inverse ECG-lead transformations. This 
was performed for two example inverse linear ECG-lead 
transformations. More precisely, we compared the 
performance of inverse ECG-lead transformations for 
transformations from the Frank VCG to the standard 12-
lead ECG and for transformations in the opposite 
direction. 

 

2. Material and methods 
2.1. Study population 

We base our research on a study population of 726 
subjects.  The study population is composed of 229 
normal subjects, 265 subjects with myocardial infarction 
and 232 subjects with left ventricular hypertrophy. The 
study population was randomly partitioned into a training 
dataset (𝐷𝑇𝑟𝑎𝑖𝑛) and a test dataset (𝐷𝑇𝑒𝑠𝑡).  Table 1 
details the composition of 𝐷𝑇𝑟𝑎𝑖𝑛 and 𝐷𝑇𝑒𝑠𝑡. 

 

Table 1.  Composition of train data (𝐷𝑇𝑟𝑎𝑖𝑛) and test 
data (𝐷𝑇𝑒𝑠𝑡). 

 Normal MI LVH Total 
𝐷𝑇𝑟𝑎𝑖𝑛 172 199 174 545 
𝐷𝑇𝑒𝑠𝑡 57 66 58 181 

Notes. Normal, Subjects with no abnormalities in their 
ECGs; MI, Subjects with myocardial infarction; LVH, Subjects 
with left ventricular hypertrophy. 

 
2.2. BSPM data 

One body surface potential map (BSPM) was recorded 
for each of the 726 subjects in the study population. Each 
BSPM used in this research contains electrocardiographic 
data of 120 BSPM leads.  A representative average  
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QRS-T complex was calculated for each of the 120 
BSPM leads.  Three of the 120 leads were recorded from 
electrodes placed on the right and left wrist and the left 
ankle (VR, VL and VF respectively).  Electrodes situated 
at 81 anterior and 36 posterior locations were used to 
record 117 thoracic leads.  All thoracic leads were 
recorded with reference to the Wilson central terminal 
(WCT).  A comprehensive description of the BSPM data 
and the recording procedure can be found in [5, 6]. A 
Laplacian 3D interpolation procedure [7] was applied to 
the 117 thoracic BSPM leads.  This was performed to 
obtain body surface potentials at the locations of the 352 
Dalhousie torso [8] nodes.   

2.3. Frank VCG data 
One Frank VCG [9] was extracted from each of the 

726 BSPMs. First, body surface potentials at the A, C, E, 
F, H, I and M electrode locations of the Frank lead system 
were extracted from the interpolated BSPM data. 
Required body surface potentials from body locations that 
were not a direct subset of the 352 nodes that are used by 
the Dalhousie torso were obtained using linear 
interpolation [10].  Second, the body surface potentials at 
the Frank electrode locations were used to derive the 
Frank VCG using (1). 

𝑽𝑪𝑮 = 𝑿,𝒀,𝒁 = 𝝋𝑨,… ,𝝋𝑴 ∙ 𝑨𝑻 . (1) 
Where 𝝋𝑨, 𝝋𝑪, 𝝋𝑬, 𝝋𝑭, 𝝋𝑯, 𝝋𝑰, and 𝝋𝑴 are 𝑛×1 

vectors that contain 𝑛 sample values of potentials at the 
Frank electrode locations A to M respectively, ∙ 𝑻 refers 
to the transpose of a matrix, 𝑛 denotes the number of 
samples in the average QRS-T complex, 𝑨  is a 3×7 
matrix of published coefficients [11] that allow for a 
derivation of the Frank VCG using the potentials 𝝋𝑨 to 
𝝋𝑴, and 𝑽𝑪𝑮  is a 𝑛×3 matrix containing 𝑛 sample 
values of the Frank VCG, the 𝑛×1 vectors 𝑿, 𝒀 and 𝒁 
contain 𝑛 sample values of the three Frank leads X, Y and 
Z respectively. 

2.4. Standard 12-lead ECG data 
One standard 12-lead ECG [12] was extracted from 

each of the 726 BSPMs. First, body surface potentials 
recorded at the wrists and ankles were used to calculate 
the limb leads of the standard 12-lead ECG and the 
potential at the WCT.  Second, the body surface 
potentials at the electrode locations associated with the 
precordial leads were extracted from the interpolated 
BSPM data. Required body surface potentials from 
locations that were not a direct subset of the 352 
Dalhousie torso nodes were obtained using linear 
interpolation [10].  Third, average QRS-T complexes of 
the precordial leads were calculated in reference to the 
WCT using the body surface potentials obtained from the 
locations of the precordial electrodes. 

2.5. Linear regression based ECG lead 
transformation matrices 

Two linear ECG lead transformation matrices were 
developed using multivariate linear regression [13] and 
the data in 𝐷𝑇𝑟𝑎𝑖𝑛.  More precisely a transformation 
matrix that allows for the transformation from the 
standard 12-lead ECG to the Frank VCG and a 
transformation matrix that allows for the transformation 
from the Frank VCG to the standard 12-lead VCG were 
developed. This was performed using the approach in (2a) 
and (2b). 

 
𝑨𝟏𝟐𝑳𝒓𝒆𝒈 = 𝑽𝑪𝑮𝑻 ∙ 𝑽𝑪𝑮 !𝟏 ∙ 𝑽𝑪𝑮𝑻 ∙ 𝑺𝟏𝟐𝑳 . (2a) 

𝑨𝑽𝑪𝑮𝒓𝒆𝒈 = 𝑺𝟏𝟐𝑳𝑻 ∙ 𝑺𝟏𝟐𝑳 !𝟏 ∙ 𝑺𝟏𝟐𝑳𝑻 ∙ 𝑽𝑪𝑮. (2b) 
 
Where ∙ 𝑻  and ∙ !𝟏denote the transpose and the 

inverse of a matrix respectively, 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 refers to a 
3×12 matrix of transformation coefficients that allows 
for the transformation of the Frank VCG into the standard 
12-lead ECG, 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 refers to a 12×3 matrix of 
transformation coefficients that allows for the 
transformation of the standard 12-lead ECG into the 
Frank VCG, 𝑽𝑪𝑮 refers to a n×3 matrix that contains 𝑛 
sample values of the X, Y and Z leads of the Frank VCG, 
𝑺𝟏𝟐𝑳 refers to a n×12 matrix that contains 𝑛 sample 
values of the eight independent leads I, II and V1 to V6 of 
the standard 12-lead ECG and n denotes the total number 
of QRS-T samples for each ECG lead in 𝐷𝑇𝑟𝑎𝑖𝑛.  

 
2.6. Pseudo invers of the linear ECG lead 
transformation matrices 

One inverse lead transformation for each of the two 
linear regression based ECG lead transformation matrices 
was developed. This was achieved by calculation the 
pseudo-inverse of the two different lead transformation 
matrices. More precisely, the pseudo-inverse of the 
regression based VCG to 12-lead transformation matrix 
𝑨𝟏𝟐𝑳𝒓𝒆𝒈 was determined using (3a) and the pseudo-
inverse of the regression based 12-lead ECG to VCG 
transformation matrix 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 was determined using 
(3b). 

 
𝑨𝑽𝑪𝑮𝒑𝒊𝒏 = 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 𝑻 ∙ 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 ∙ 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 𝑻 !𝟏. (3a) 

𝑨𝟏𝟐𝑳𝒑𝒊𝒏 = 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 𝑻 ∙ 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 !𝟏 ∙ 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 𝑻. (3b) 

Where 𝑨𝟏𝟐𝑳𝒓𝒆𝒈, 𝑨𝑽𝑪𝑮𝒓𝒆𝒈, ∙ 𝑻 and ∙ !𝟏 are as 
defined in (2a) and (2b), 𝑨𝑽𝑪𝑮𝒑𝒊𝒏 denotes a 12×3 
pseudo-inverse based matrix of transformation 
coefficients that allows for the transformation of the 
standard 12-lead ECG into the Frank VCG and 𝑨𝟏𝟐𝑳𝒑𝒊𝒏 
refers to a 3×12 matrix of transformation coefficients that 
allows for the transformation of the Frank VCG into the 
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standard 12-lead ECG. 

2.7. Derivation of the target leads 
Regression and pseudo-inverse based transformation 

matrices were used to derive their respective target lead 
sets. More precisely, the matrices 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 and 𝑨𝑽𝑪𝑮𝒑𝒊𝒏 
were used to derive Frank VCGs using standard 12-lead 
ECG data for each of the 181 subjects in 𝐷𝑇𝑒𝑠𝑡 using 
(4a) and (4b).  

𝒅𝑽𝑪𝑮 
𝒓𝒆𝒈 = 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 ∙ 𝑺𝟏𝟐𝑳 

  . (4a) 

𝒅𝑽𝑪𝑮 
𝒑𝒊𝒏 = 𝑨𝑽𝑪𝑮𝒑𝒊𝒏 ∙ 𝑺𝟏𝟐𝑳 

   . (4b) 

Where 𝑨𝑽𝑪𝑮𝒓𝒆𝒈 is as defined in (2b) and 𝑨𝑽𝑪𝑮𝒑𝒊𝒏 is 
as defined in (3a), 𝑺𝟏𝟐𝑳 

  is a 𝑛×8 matrix that contains 
the n sample values of the QRS-T complex for the eight 
independent leads of the standard 12-lead ECG of one 
subject in 𝐷𝑇𝑒𝑠𝑡, 𝒅𝑽𝑪𝑮𝒊

𝒓𝒆𝒈 and 𝒅𝑽𝑪𝑮𝒊
𝒑𝒊𝒏 are 𝑛×3 

matrices that contain the derived leads of the Frank VCG 
computed from regression and pseudo-inverse based 
transformation matrices respectively. 

In addition, the matrices 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 and 𝑨𝟏𝟐𝑳𝒑𝒊𝒏 were 
used to derive the standard 12-lead ECG from Frank 
VCG data for each of the 181 subjects in 𝐷𝑇𝑒𝑠𝑡 using 
(5a) and (5b).  

𝒅𝟏𝟐𝑳 
𝒓𝒆𝒈 = 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 ∙ 𝑽𝑪𝑮 

  . (5a) 

𝒅𝟏𝟐𝑳 
𝒑𝒊𝒏 = 𝑨𝟏𝟐𝑳𝒑𝒊𝒏 ∙ 𝑽𝑪𝑮 

   . (5b) 

Where 𝑨𝟏𝟐𝑳𝒓𝒆𝒈 is as defined in (2a) and 𝑨𝟏𝟐𝑳𝒑𝒊𝒏 is 
as defined in (3b), 𝑽𝑪𝑮 

  is a 𝑛×3 matrix that contains the 
n sample values of the QRS-T complex for the three leads 
of the Frank VCG of one subject in 𝐷𝑇𝑒𝑠𝑡, 𝒅𝟏𝟐𝑳 

𝒓𝒆𝒈 and 
𝒅𝟏𝟐𝑳 

𝒑𝒊𝒏 are 𝑛×8 matrices that contain the derived leads 
of the eight independent leads of the standard 12-lead 
ECG computed from regression and pseudo-inverse based 
transformation matrices respectively. 

2.8. Performance assessment 
The performance of the different ECG lead 

transformation matrices was quantified using the data in 
𝐷𝑇𝑒𝑠𝑡.  First, root mean square error (RMSE) values 
were calculated between the recorded and the derived 
ECG leads. This was performed for each of the four 
transformation matrices and for each of the 181 subjects 
in 𝐷𝑇𝑒𝑠𝑡. Second, the mean [95% confidence intervals 
(CI)] and the standard deviation of the 181 different 
RMSE values associated with each target lead and 
transformation method were determined. Third, the 
statistical significance of the differences in the mean 
RMSE values between regression and pseudo-inverse 
based transformation methods was assessed (two-tailed, 
paired t-test, significance level alpha = 0.05).   

3. Results  
The findings of the performance assessment associated 

with the inverse transforms from the 12-lead ECG to the 
Frank VCG and the inverse transformations in the 
opposite direction are provided in Table 1 and Table 2 
respectively.   

Table 1. Mean and standard deviation of the root mean 
square error values calculated between derived and 
recorded leads of the Frank VCG.  

Derived 
lead 

Transformation 
method 

Mean  
[95% CI]a 

Standard 
deviationa 

p-
valueb 

X 
Regression 30.1 [26.7; 33.4] 22.6 

<0.001 
Pseudo-inverse 63.2 [56.5; 69.8] 45.4 

Y 
Regression 30.3 [26.2; 34.5] 28.3 

<0.001 
Pseudo-inverse 48.0 [43.9; 52.0] 27.6 

Z 
Regression 47.0 [42.6; 51.3] 29.6 

<0.001 
Pseudo-inverse 64.0 [59.0; 68.9] 33.4 

amean and standard deviation of the RMSE values are provided 
in µV; bp-value obtained from a two-tailed, paired t-test for the 
statistical significance of the difference in the mean RMSE 
value associated with regression and pseudo-inverse based 
transformation matrices.  

Table 2. Mean and standard deviation of the root mean 
square error values calculated between derived and 
recorded leads of the standard 12-lead ECG.  

Derived 
lead 

Transformation 
method 

Mean  
[95% CI] 

Standard 
deviation 

p- 
value 

I 
Regression 65.0 [58.7; 71.3] 43.0 

<0.001 
Pseudo-inverse 156.8 [145.8; 167.8] 75.1 

II 
Regression 37.5 [31.6; 43.4] 40.1 

<0.001 
Pseudo-inverse 60.2 [52.9; 67.5] 49.8 

V1 
Regression 85.5 [77.8; 93.3] 52.9 

<0.001 
Pseudo-inverse 194.7 [181.6; 207.8] 89.2 

V2 
Regression 182.8 [167.7; 197.8] 102.7 

<0.001 
Pseudo-inverse 526.0 [491.6; 560.4] 234.5 

V3 
Regression 113.7 [103.9; 123.5] 66.9 

<0.001 
Pseudo-inverse 209.5 [191.0; 228.1] 126.4 

V4 
Regression 150.6 [132.2; 169.0] 125.7 

<0.001 
Pseudo-inverse 394.0 [365.3; 422.8] 195.8 

V5 
Regression 98.9 [90.3; 107.5] 58.7 

<0.001 
Pseudo-inverse 286.1 [261.1; 311.1] 170.4 

V6 
Regression 58.7 [52.2; 65.3] 44.6 

<0.001 
Pseudo-inverse 105.7 [96.4; 114.9] 63.0 

amean and standard deviation of the RMSE values are provided 
in µV; bp-value obtained from a two-tailed, paired t-test for the 
statistical significance of the difference in the mean RMSE 
value associated with regression and pseudo-inverse based 
transformation matrices. 
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4. Discussion and conclusion 
This paper reported on the estimation performance of 

different inverse ECG-lead transformations. One pseudo-
inverse and one linear regression based transformation 
matrix was developed for each of the investigated inverse 
ECG-lead transformations.  

Our findings show differences in the estimation 
performance of linear regression and pseudo-inverse 
based invers ECG-lead transformations. The observed 
differences were found to be in favor for the regression 
based approach. Typical mean RMSE values associated 
with the regression based approach were found to be 
approximately two thirds to half of the mean RMSE 
values achieved by the approach based upon the pseudo-
inverse. For example, the RMSE values (mean; [95% 
confidence interval]) when estimating Frank VCG lead X 
from the 12-lead ECG using the linear regression and the 
pseudo-inverse approach were found to be 30µV; [27µV; 
33µV] and 63µV; [57µV; 70µV] respectively. 

Linear regression is based upon the minimization of 
the squared errors between derived and recorded target 
leads on the training dataset. Regression based 
transformation matrices represent therefore the best (in 
the least squares sense) linear transformation of the 
recoded basis leads into the estimated target leads. 
Regression based inverse ECG-lead transformations will 
therefore lead to estimates, that are at least as good or 
better than what can be achieved by linear 
transformations that are developed using the pseudo-
inverse. This, however, is provided that the regression 
based inverse ECG-lead transformations are developed 
using a sufficiently sized training dataset that is 
reprehensive of the study population. It is evident that an 
unrepresentative and or small training dataset might lead 
to regression based inverse ECG-lead transformations 
that are associated with higher estimation errors when 
compared to what is achieved by the pseudo-inverse of a 
linear ECG-lead transformation that has been developed 
using an representative and sufficiently sized training 
dataset. 

A limitation of this research is that it has not been 
assessed or specified what constitutes a sufficiently sized 
and representative dataset. However, based upon the 
findings of this research we recommend the following 
procedure when developing inverse ECG-lead 
transformations. Provided sufficient data are available, 
one should develop regression based inverse ECG-lead 
transformations and compare their estimation 
performance against their pseudo-inverse counterparts. 
This approach allows for the identification and utilization 
of the best performing inverse ECG-lead transformation 
for a given application. 
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