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Abstract

This year, the objective of the PhysioNet/Computing
in Cardiology challenge was the classification of 12-lead
electrocardiograms (ECG). The approach presented in
this paper consists of two parts, feature extraction and
classification. The extracted features can be separated
into domain-specific and domain-agnostic features, where
domain-specific features are based on known ECG pro-
cessing methods such as QRS-detectors. Domain-agnostic
features are generated by wavelet transforms that take the
raw 12-lead ECG as input. Additionally, a novel beat-to-
beat correlation analysis is proposed to identify arrhyth-
mia occurring among other healthy beats. These features
are then combined and classified by gradient-boosted trees
implemented in Python. To account for the complexity of
the multi-label and multi-class problem definition, a One-
vs-Rest scheme is utilized, where distinct classifiers for
each class determine whether a sample belongs to said
class. The resulting imbalance in training sets for each
classifier was compensated for by giving the positive sam-
ples a higher weight. The classifiers were trained using the
XGBoost gradient boosting system. The proposed classifi-
cation scheme of the team “desafinado” received a score
of 0.576 on the validation dataset and a score of 0.233 on
the test set of the challenge (rank 19 of 41).

1. Introduction

Cardiovascular diseases are the leading causes of mor-
tality and account for 48 % of all deaths among the non-
communicable diseases [1]. Advances in the electrocar-
diogram (ECG) monitoring in recent years have increased
the demand for automated and computer-aided ECG di-
agnosis. Machine learning tools are widely employed to
meet this demand, have been tested in the problem of ar-
rhythmia classification [2,3] and remain to be a focal point
in the future of ECG diagnosis. The necessity of an auto-
mated arrhythmia classification is addressed in the Phys-
ioNet/Computing in Cardiology Challenge 2020 [4] to en-

courage open-source approaches and obtain reproducible
results.

This paper presents the approach developed by our team
“desafinado”, which uses gradient boosting on features
generated from fiducial points, wavelet transform, higher
order statistics and a novel beat-to-beat correlation analy-
sis of the 12-lead ECG data.

2. Methods

In the following, preprocessing, feature extraction, clas-
sification, and postprocessing are described.

2.1. Preprocessing

ECG recordings were low-pass filtered (80 Hz), after re-
moving the baseline wander by using a two-step median
filter (lengths of 200 ms and 600 ms). To reduce the com-
plexity of the feature vector from the beat-to-beat corre-
lation analysis in Section 2.2.3, Kors transformation was
used to transform 12-lead ECG recordings into orthogo-
nal XYZ leads [5]. Both 12-lead ECG and obtained XYZ
leads were segmented using BioSPPy [6].

2.2. Feature Extraction

For the classification, a wide range of features was used.
These can be categorized into three groups.

2.2.1. ECG Timing Features

After segmenting the beats using Pan&Tompkins al-
gorithm [7], following features (~vtiming) were calculated
from the resulting R-peak locations ri:
• RR-interval δi = ri+1 − ri,
• ∆RR δ2i = δi+1 − δi,
• pNN50,
• pNN20,
• number of beats.

In addition to these features, the following timing fea-
tures were calculated from the segmented heartbeats:
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• P-wave onset,
• QT interval,
• ST interval,
• T-wave onset,
• QRS width.

2.2.2. ECG Waveform Features

From the segmented heartbeats, the amplitudes of R, P,
Q, T, and S-wave were calculated. In addition to these
features calculated for 12 leads, the ratio of the amplitudes
from the following waves were included:
• R/P,
• R/Q,
• R/T,
• R/S.

The set of waveform features (~vwav) is completed by
adding the average signal quality [8], average energy in
the signal and the approximation coefficients of 3rd-level
wavelet decomposition using a db1 wavelet.

2.2.3. Beat-to-Beat Correlation Analysis

Using an analysis window of 600 ms centered at the R-
peak locations ri, the median beat was calculated for each
XYZ lead. Using this segmentation, beat waveforms were
extracted for an analysis window of 600 ms centered at
ri. Using these segmented heartbeats, the median beat for
each lead was calculated. Using Pearson’s correlation, a
correlation vector consisting of ρi elements was calculated
as

ρi =
1

L− 1

L∑
n=1

(xi[n]− µi

σi

)(xmed[n]− µmed

σmed

)
, (1)

where ρi, µi and σi represent the correlation coefficient,
the mean and the standard deviation of the ith beat, re-
spectively. xi[n] is the ith beat among N beats from the
segmentation and xmed[n] is the median beat of these N
beats.

Segmented heartbeats were then sorted according to
their ρi with the median heartbeat of the section. The
most correlated (accordant) heartbeat and the least cor-
related (dissonant) heartbeat were retrieved, as illustrated
in Figure 1. This attempt aims to isolate arrhythmias that
do not occur at each heart cycle, and are thus prominent
with their dissimilarity to the neighboring beats.

The following features were calculated from the corre-
lation vector ~ρ for XYZ lead:
• std, mean, median, max, min of ~ρ ,
• std(~ρ )/mean(~ρ ),
• std(∆ρ), where ∆ρ = ρi+1 − ρi,
• std(∆ρ)/mean(~ρ ).

In addition to these features from the beat-to-beat cor-
relation vector ~ρ , the following waveform features were

calculated for both the dissonant and the accordant beats
at each XYZ lead:
• skewness and kurtosis of each 50 ms long section,
• argmax, max and min for the region [0 ms to 110 ms],
• max and min for the region [240 ms to 360 ms],
• argmax, max and min for the region [410 ms to 570 ms].

2.3. Classifier

The problem of assigning one or more of K classes to
the 12-channel ECG recording and its corresponding fea-
tures is a so-called multi-class multi-label task. The pre-
sented classifier first transforms this problem into K bi-
nary classification problems by using a One-vs-Rest ap-
proach, where the jth classifier decides whether the ECG
recording belongs to class j or not. This problem trans-
formation was needed since the utilized gradient boosting
classifier cannot handle multiple labels per input. Due to
the application of the One-vs-Rest approach, binary classi-
fiers receive highly imbalanced datasets even with slightly
more positive samples [9]. To account for this imbalance,
positive samples for class k were re-weighted during the
training of classifier k by

wk =
Ntot −Nk

Nk
, (2)

where Nk and Ntot are the number of samples for class k
and the total number of samples, respectively. The neg-
ative samples received a weight of 1. Classes considered
to be equivalent by the organizers were treated as the same
class and only the scored classes were used in the classifier.
Thus, the total number of classes was K = 25.

The classification was handled by the XGBoost algo-
rithm utilizing the idea of gradient boosted trees [10].
Boosted trees are decision trees used as an ensemble to
build a single stronger classifier from many weak clas-
sifiers. Gradient boosting refers to the gradient descent
method employed to find the best decision tree, whereas
boosting itself indicates that samples previously misclassi-
fied receive larger weights for the next training steps. XG-
Boost utilize a variety of highly optimized techniques to
make the training both robust and fast while still maintain-
ing a high degree of customizability.

Among 20 tunable parameters offered by XGBoost, 3
of the most impactful ones were tested extensively for
this challenge. All of these parameters, namely gamma,
min child weight and max depth, play an important role
for avoiding overfitting without losing the ability to gen-
eralize to unseen data. As the hidden test data partly
includes samples from a new data source, the parame-
ter combinations were optimized not only through 5-fold
cross-validation but also by holding out entire data sources
for evaluation.
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Figure 1. The correlation analysis conducted on the orthogonal XYZ leads. After segmenting the heartbeats, the found
median beat is Pearson-correlated with each individual beat to find the least and the most similar beats, called dissonant
and accordant beats, respectively.

2.4. Postprocessing

Since the classifier makes use of the One-vs-Rest tech-
nique, it consists of independent binary classifiers for each
of the K classes. One of the downsides of this approach is
the independent decisions as some diagnoses have a higher
probability to occur jointly whereas other diagnoses might
not be able to appear together in the same recording. This
could also lead to a scenario where no output class is as-
signed.

In order to reduce the impact of these limitations, each
class was assigned a specific threshold of tk instead of re-
lying on the default binary classification threshold of 0.5.
The thresholds tk were found by optimizing the challenge
score as a function of tk during cross-validation.

3. Results

Table 1 shows the results of the 10-fold cross-validation
using the training data (top part) as well as the results of
the challenge validation (bottom part), i.e. the result of
the official phase of the challenge. Results are presented
in terms of area under the receiver operating characteristic
(AUROC), area under the precision-recall curve (AUPRC),
accuracy, F-measure, and the challenge score as described
in [4]. Moreover, mean and standard deviation (SD) over
all folds are calculated.

The cross-validation shows minimal variability between
the different folds. Moreover, while the AUROC and
AUPRC are higher on the challenge validation dataset, ac-
curacy and F-measure are lower compared to the average
results of the cross-validation. The challenge validation
score, however, lies within the standard deviation of the
cross-validation results. On the evaluation system of the
challenge, the runtime was 101 hours and 28 minutes. Dur-
ing the official phase of the challenge, the algorithm ranked
95 out of 306.

10-fold Training Cross-Validation
indx AUROC AUPRC Accuracy F-measure Score

1 0.83 0.30 0.29 0.45 0.57
2 0.84 0.30 0.30 0.46 0.58
3 0.83 0.31 0.30 0.46 0.58
4 0.83 0.29 0.28 0.45 0.57
5 0.83 0.30 0.29 0.45 0.57
6 0.83 0.29 0.30 0.45 0.57
7 0.84 0.30 0.29 0.45 0.57
8 0.83 0.28 0.28 0.44 0.55
9 0.83 0.29 0.28 0.45 0.56
10 0.83 0.29 0.30 0.45 0.57

mean 0.83 0.30 0.29 0.45 0.57
sd 0.0030 0.0064 0.0074 0.0069 0.0088

Challenge Validation
0.906 0.478 0.224 0.413 0.576

Table 1. Results of 10-fold cross-validation combining
all training datasets (top) as well as challenge validation
results (bottom).

Table 2 shows the results of the leave-one-dataset-out
cross-validation using the training data, Table 3 shows the
results achieved on the final challenge test set.

Dataset AUROC AUPRC Accuracy F-measure Score
CPSC unused 0.63 0.10 0.06 0.14 0.41
CPSC 0.88 0.54 0.16 0.17 0.48
Georgia 0.72 0.22 0.14 0.29 0.34
PTB 0.59 0.08 0.00 0.02 -3.26
PTB-XL 0.74 0.23 0.25 0.30 0.03
StPetersburg 0.54 0.07 0.00 0.03 0.20

mean 0.68 0.21 0.10 0.16 -0.30
sd 0.1208 0.1787 0.0981 0.1218 1.4584

mean \PTB 0.70 0.23 0.12 0.19 0.29
sd \PTB 0.1258 0.1875 0.0950 0.1125 0.1762

Table 2. Results of leave-one-dataset-out cross-validation
on the training data.
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Dataset AUROC AUPRC Accuracy F-measure Score
Test Database 1 0.967 0.833 0.325 0.182 0.681
Test Database 2 0.887 0.481 0.186 0.412 0.556
Test Database 3 0.806 0.358 0.009 0.202 -0.013
Full Test Set 0.822 0.362 0.089 0.298 0.233

Table 3. Results of the official, final challenge test evaluation.

First, it becomes obvious that the performance degrades
when complete datasets are held out for testing. Moreover,
great variability between datasets is observed. In partic-
ular, the results on the “PTB” dataset are most inferior.
However, even when this dataset is left out, the average
score degrades to 0.29 (as compared to 0.57 in both the
10-fold training cross-validation and the challenge valida-
tion).

Similar observations can be made in terms of the fi-
nal, official challenge test evaluation (Table 3): While
the scores achieved on the hidden test databases 1 and 2
are comparatively high (0.681 and 0.556), the score on
database 3 is low (-0.013). On the full test set, the submit-
ted algorithm of our team “desafinado” received an overall
score of 0.233, ranking it 19th out of 41 final entries.

4. Discussion and Outlook

The presented approach demonstrates that by using
straightforward feature engineering and sophisticated en-
semble machine learning, a competitive algorithm for clas-
sification of 12-lead ECGs can be constructed. Both in
terms of rank (19 out of 41) and in terms of score (0.233 vs.
a numeric average of 0.174 over all 41 teams), it achieved
above-average results in the challenge.

Notwithstanding, it is obvious that several approaches
achieved significantly better results, the top four teams
achieving scores more than twice as high. In addition, it
can be concluded that the ability to generalize is limited,
as obvious by the variation in results on the test databases.

In future work, the proposed features need to be opti-
mized. It is obvious that large redundancy is currently not
exploited properly. For example, the RR-intervals are cal-
culated for each lead separately instead of using a fused
approach. Finally, the used classifier allows to analyze the
feature importance. This property will be exploited in fu-
ture work to allow further analysis on how the classifica-
tions are achieved. It may also help to shed light on which
combination of leads and features are most important and
may be optimized for improved results.
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