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Abstract

Atrial fibrillation (AF) is characterized by complex
and irregular propagation patterns. Multipoint intracar-
diac mapping systems present a limited spatial resolution,
which makes it difficult to identify AF drivers and ablation
targets. These AF onset locations and drivers responsible
for AF perpetuation are main targets for ablation proce-
dures. Although noninvasive electrocardiographic imag-
ing (ECGI) and inverse problem-based methods have been
tested during AF conditions, they need an accurate mathe-
matical modeling of atria and torso to get good results. In
this work, we propose to model the location of AF drivers
from body surface potentials (BPS) as a supervised clas-
sification problem. We used deep learning techniques to
address the problem. We were able to correctly locate the
92% and 96% of drivers in the test and training sets, re-
spectively (accuracy of 0.92 and 0.96), while the Cohen’s
Kappa was 0.89 for both sets. Therefore, proposed method
can help to identify target regions for ablation using a non-
invasive procedure as BSP mapping.

1. Introduction

Atrial fibrillation (AF) is the most common type of ar-
rhythmia in clinical practice. AF affects more than 33 mil-
lion patients in the world [1]. Patients with this condition
have an increased risk of suffering embolism, cardiac fail-
ure, stroke and, in the worst of cases, death [2]. One of
the clinical goals in AF patients is to restore sinus rhythm,
usually by ablation. Main targets of ablation are AF onset
locations and drivers responsible for AF perpetuation [3].
Several studies have proposed different strategies to locate
these AF drivers by applying the inverse problem of ECG
Imaging (ECGI) with promising results [4—7]. However,
the inverse problem approach still needs further improve-
ment. We propose to model the location of AF drivers from
body surface potentials (BPS) as a supervised classifica-
tion problem. We used deep learning techniques, as a su-
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pervised model, to address the location of AF drivers from
conveniently annotated realistic computerized AF mod-
els [8].

The use of Deep Learning (DL) techniques have under-
gone considerable development in bioengineering the last
decade. DL has been used in AF detection by using RNNs
and CNNs [9], by STFT, stationary wavelet transform and
CNNs [10], and in the detection of individuals at risk of
suffering from Paroxysmal AF by CNNs [11].

The remaining of the paper is organized as follows. In
Section 2 we introduce the computational models used for
this study, the experimental set-up, performance metrics
and Deep Learning architecture. Final results are summa-
rized in Section 3 and in Section 4 main conclusions are
presented.

2. Methods

2.1. Computerized Models

We used realistic computerized models of atria (N=2039
nodes) and torso (M=659 nodes)[6, 8, 12]. This geomet-
rical model considers a simplified unique endocardium-
epicardium layer for the atrial tissue. Atria and torso
models were used to simulate 13 different AF propaga-
tion patterns in both left atria (LA) and right atria (RA),
with different complexity and driver positions: Posterior
Left Atrial Wall (PLAW), Left Inferior Pulmonary Vein
(LIPV), Left Superior Pulmonary Vein (LSPV), Right In-
ferior Pulmonary Vein (RIPV), Right Superior Pulmonary
Vein (RSPV), Right Atrial Appendage (RAA) and Right
Atria Free Wall (RAFW).

2.2.  Modeling AF driver location as a clas-
sification problem

We proposed to address the location of AF drivers as
a supervised classification problem. We divided the atria
into 7 regions (Figure 1-a) where the AF drive can be lo-
calized [13]. Each region represent a class to which the
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Figure 2. Schematic overview of the Multilayer Perceptron (MLP)-based proposed method.

AF driver belongs. To obtain labeled data, AF driver lo-
cation from the computerized model were manually clas-
sified into one region for each time-instant.

To obtain the input data (simulated BSP), the forward
problem of ECGI was solved by computing the M x N
transfer matrix A using the boundary element method [6,
14, 15]. Simulated BSP were referenced to the Wilson
Terminal Center, corrupted with additive Gaussian noise
(SNR = 20 dBs) and filtered using a 4"-order bandpass
Butterworth filter (fc;=3 Hz and fco=30Hz) [6, 8].

A set of 64 electrodes from the whole torso geome-
try were selected to represent realistic multi-electrode vest
used in electrophysiological studies, see Figure 1-a).

2.3. Deep-Learning Architecture

One typical Artificial Neural Network (ANN) is the
Multilayer Perceptron (MLP). It consists on a series of
groups of neurons (layers) that are connected between
them. Each neuron applies an activation function for the
weighted sum of its inputs, and the result is transmitted to
the next neuron. This type of non-linear model is inspired
by the neural architecture of the brain [16].

For this study we trained an MLP with 3 hidden lay-
ers (100,50,50) units each. The output layer consists on 8
units, one per region, and one for no AF driver. We used
ReLu activation function in hidden layers and Softmax in
the output. This Softmax layer allows to obtain the prob-
ability of the input sample to belong to each region. A

schematic overview of this model can be seen in Figure 2.

2.4. Performance metrics

To assess the performance of the implemented DL mod-
els, we used two different metrics. The first one is the
accuracy (Acc), measured as the fraction of well-classified
drivers (true positives, TP) over the total of drivers (Total):

TP
Total

Ace =

The second performance metric is the Cohen’s kappa. It
is a robust statistic used for rating reliability testing [17]. A
score of 0 means the agreement that can be expected from
random chance, whereas a score of 1 represents perfect
agreement between the raters. Scores less than 0 means
that there is less agreement than chance. It is computed as:

Po — Pe
L —pe
where p, is the relative agreement among raters (iden-
tical to accuracy), and p. the hypothetical probability of
chance agreement.

R =

2.5. Experimental set-up

We first addressed the problem considering each time
instant independently. So that, the whole data set is com-
prised of input data vectors with 64 entries from the BSP
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Table 1. Obtained accuracy and Cohen’s kappa for independent time instants and model independence.

Train Acc  Test Acc  Train Kappa Test Kappa
Independent time instants 0.955 0.912 0.893 0.893
Independent time instants (CW) 0.961 0.925 0.895 0.895
Model independence 0.823 0.452 0.724 0.723
Model independence (CW) 0.815 0.439 0.727 0.725
a) Test b) Test
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Figure 3. Confusion matrices obtained for independent time instants (a) and model independence methods (b).

electrodes, x;, and the corresponding label y; which can
have values 0,1, ...,7. The whole data set was split into
training (80%) and test (20%) sets. This approach allowed
samples from the same model to be in the training and in
the test set. Secondly, to avoid the bias introduced by the
first approach, we consider model independence, thus sam-
ples from a model are not allowed to be simultaneously in
training and test set.

The problem is imbalanced, since there are several atria
regions which are over represented in the data set. In or-
der to address this problem we tried to weigh the classes
accordingly to the probability of occurrence.

3. Results

Table 1 shows the results considering each time instant
as an independent sample, thus allowing samples from the
same model to be in the training and in the test set. Table 1
shows also results considering independence by models,
where samples from a given model cannot be simultane-
ously in training and test sets. With this approach, we were
able to correctly locate the 95% and 91% of drivers in the
training and test sets, respectively (accuracy of 0.95 and
0.91), while the Cohen’s Kappa was 0.893 for both sets.

Using class weight (CW) to fight imbalance we slightly
improved the metrics, being able to correctly locate the
96% and 92% of drivers in the training and test sets, re-
spectively, while the Cohen’s Kappa was 0.895 for both
sets.

In Figure 3-a the confusion matrix for this approach (test
set, CW) is shown. In the case of the label 3, the 96%
of drivers are well classified, but this percentage drops to

the 77% in the case of the label 7, with much less data
available.

Table 1 shows results for the approach of splitting the
data set by Models (using also class weight). This is a more
realistic and fair scenario. The accuracy for the training
set are 0.82 and 0.81 using CW (0.72 for Cohen’s Kappa),
while accuracy for the test set was 0.45 and 0.44 using
CW. These results suggest that we are overfitting the model
to the training set. However, Cohen’s Kappa maintains a
value of 0.72, which indicated that the model is able to
fight the imbalance problem.

In Figure 3-b the confusion matrix for this approach (test
set, CW) is shown.

4. Discussion and conclusions

The deep learning method we proposed can help to iden-
tify target regions for ablation using a non-invasive pro-
cedure, as BSP mapping. The main advantage of this
methodology is to predict those regions without using
ECGI, which requires accurate mathematical modeling of
torso and atria.

Although the results we got are very promising, there
are some drawbacks that should be addressed. The main
problem we had to face is the imbalance of input data.
Our dataset is composed by only 13 models that repre-
sent different propagation patterns, but the distribution of
drivers across the 7 defined atrial regions is not balanced.
Therefore, the results on those less represented regions are
going to be worse. It also can lead to overfitting to the
training set (problem that can be shown in the second pro-
posed model). One way to solve this problem is to test

Page 3



our methodology with a higher number of propagation pat-
terns. Overfitting to the training set can be also fixed us-
ing dropout, regularization or data augmentation. For ex-
ample, data augmentation can be achieved by training the
models with signals with different SNRs.

Finally, future work is to apply this methodology with
real patient data, where driver tagging can be difficult. For
this task, Convolutional Neural Networks could be useful,
since they can use the spatial characteristics of BSP that
are omitted when using MLP.
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