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Abstract

Automatic abnormality detection of ECG signals is a
challenging topic of great research and commercial inter-
est. It can provide a cost-effective and accessible tool for
early and accurate diagnosis, which increases the chances
of successful treatment.

In this study, an ensemble classifier that identifies 24
types of cardiac abnormalities is proposed, as part of the
PhysioNet/Computing in Cardiology Challenge 2020. The
ensemble model consists of a convolutional recurrent neu-
ral network that is able to automatically learn deep fea-
tures, and LightGBM, a gradient boosting machine that
relies on hand-engineered expert features. The individ-
ual models are combined using class-specific weights and
thresholds, which are tuned by a genetic algorithm.

Results from 5-fold cross validation on the full training
set, report the Challenge metric of 0.593 that outperforms
both individual models. On the full hidden test set, the
proposed architecture by ”AUTh Team” achieves a score
of 0.281 with an official ranking of 13/41.

1. Introduction

Cardiovascular diseases are the leading cause of death
globally [1]. In order to provide an effective treatment,
early and accurate diagnosis is of utmost importance, how-
ever, it relies on manual ECG inspection by trained profes-
sionals, which is a time-consuming and expensive process.
Attempts at automating this process are a significant step
towards a cost-effective and accessible tool.

Over the years numerous approaches have been pro-
posed, including feature-based [2] and deep learning [3]
classifiers, nevertheless, most of them have been tested on
relatively homogeneous datasets, with few target classes.
PhysioNet/Computing in Cardiology Challenge 2020 pro-
motes research on automatic cardiac abnormality detec-
tion by making 12-lead ECG databases from a wide set
of sources, publicly available [4].

The authors propose an ensemble model that effi-

ciently combines a convolutional recurrent neural network
(CRNN) and a gradient boosting machine (GBM), termed
LightGBM [5], with interpretable results as to which
model has higher predictability for each class.

The rest of the paper is organized as follows: Section
2 describes the methods used in the proposed analysis,
as well as the ensemble model architecture. Section 3
presents the results, while Section 4 discusses model per-
formance. Finally, Section 5 concludes the paper.

2. Methods

The overall pipeline consists of: data relabeling and
pre-processing to deal with database format discrepancies,
feature extraction for the feature-based LightGBM classi-
fier, training of both individual models CRNN and Light-
GBM, and finally the creation of the ensemble. The pre-
processing steps and the ensemble model architecture are
depicted in the form of a block diagram in Figure 1.

2.1. Data Relabeling and Pre-processing

The provided datasets come from multiple sources with
different sampling rates, lengths and lead gains and were
recorded under imperfect, noisy conditions. The data also
contain abnormalities that the Challenge organizers de-
cided not to score, thus the first step of the analysis in-
volves data relabeling and pre-processing, in order to cre-
ate a single unified dataset.

Out of a total of more than 100 classes, 27 of them
are scored, with 6 of them being pair-wise identical. All
recordings with unscored diagnoses are removed, while the
remaining ones are relabeled, resulting in 24 target classes.
The signals are then filtered using a 3rd order low-pass
Butterworth filter with a cutoff frequency of 20Hz for the
high frequency noise and a Notch filter with a cutoff fre-
quency of 0.01Hz for the baseline wander. Since 99.6%
of the relabeled recordings have a sampling rate of 500Hz
and 89.2% of the data have a length of 10 seconds, the re-
maining recordings are also resampled at the same target
frequency and truncated or padded to 10 seconds.
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Figure 1. Pre-processing and ensemble architecture.

2.2. Feature Extraction

After pre-processing, feature extraction is performed so
as to produce the input for LightGBM, the feature-based
classifier. ECG signals contain oscillatory modes, thus
wavelet multiresolution analysis (WMRA) occupies quite
an important role. The signal is decomposed into multi-
ple scales/resolutions using the discrete wavelet transform
(DWT) and information about the presence of modes as-
sociated with specific abnormalities, is extracted through
statistical measures, i.e. standard deviation, skewness and
kurtosis. The selected mother wavelet is ’sym5’ and the
number of scales is empirically determined to be 8. Scales
1, 2 and 8 contain noise and baseline wander residue and
are, therefore, excluded from the analysis.

Under the existence of white noise, traditional signal
processing techniques often resort to assumptions of lin-
earity and Gaussianity. However, ECG signals, like most
real-life data, are inherently non-linear and non-Gaussian.
For that purpose, the proposed analysis involves higher or-
der statistics (HOS). Specifically, the wavelet bispectrum
(WBS) is computed using the Gaussian complex mother
wavelet due to its time localization property [6]. From the
WBS, highest peak: amplitude, 1st and 2nd frequency and
standard deviation along the axis of one frequency keep-
ing the other fixed, are extracted. Also, signal process-
ing features such as signal energy, autocorrelation function
values, signal-to-noise ratio (SNR) and R peak amplitude
statistics are calculated. All of the aforementioned features
are extracted from every lead.

Figure 2. Genetic algorithm optimal weights.

Following [7], standard time domain, frequency do-
main and non-linear heart rate variability (HRV) features
are computed. These include: RR interval and succes-
sive differences statistics, power spectral density features,
Poincaré plot features, HRV triangular index and sample
entropy. Finally, patient sex and age are also added.

2.3. LightGBM

The extracted features are used to train a LightGBM
model. LightGBM is a gradient boosting decision tree
(GBDT) [8] algorithm implementation, proposed by Mi-
crosoft [5]. It introduces algorithmic optimizations such
as the histogram method, gradient-based one-side sam-
pling and exclusive feature bundling. These algorithms,
designed to reduce time complexity, offer a well-balanced
trade-off between accuracy and efficiency, especially in
large-scale, high-dimensional data.

Since boosting algorithms are not affected by feature
scaling/normalization, no such processing is performed,
however, leads corrupted with significant motion artefacts
are imputed with zeros. Boosting algorithms do not di-
rectly support multi-label classification, therefore, 24 indi-
vidual binary classifiers are built using one-vs-rest logic.
To address binary class imbalance, the synthetic minority
over-sampling technique (SMOTE) [9] is employed, and
the minority class is over-sampled at 10% of the majority
class. The authors in [9] recommend combining SMOTE
with random under-sampling of the majority class, there-
fore random under-sampling by 50% is performed. This
way, a more balanced class distribution and, ultimately, a
more robust model is achieved. The training process uses
the binary logloss function as the objective, a learning rate
of 0.075 and early stopping based on the validation set
area under the receiver operating characteristic curve (AU-
ROC).
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Description AUROC
Basic training 0.920 ± 0.001

SMOTE 0.930 ± 0.002
SMOTE + BO 0.935 ± 0.002

Table 1. 5-fold cross validation scores before applying
anything (Basic training), after applying the synthetic mi-
nority over-sampling technique (SMOTE) and after using
the Bayesian optimizer (BO).

Performance is further improved by hyper-parameter
tuning. Due to its ability to tackle expensive-to-evaluate
functions, Bayesian optimization (BO) [10] is used. Some
abnormalities may be harder to identify than others, thus
parameters are tuned independently, in order to allow each
binary classifier to select the appropriate model complex-
ity for optimal performance. The parameters that are tuned
are: feature fraction, lambda l1, lambda l2, max depth,
min child weight, min split gain and num leaves. Scores
before and after applying SMOTE and BO are compared
in Table 1

2.4. Convolutional Recurrent Neural Net-
work

In deep learning theory, the convolutional neural net-
work (CNN) is one of the most developed areas, widely
used in image recognition for its spatial feature extraction
properties. Frequently employed in time series data, the
recurrent neural network (RNN) is a different type of neu-
ral network that has the ability to capture sequential, time
domain information. A CRNN, i.e. a RNN stacked on top
of a CNN is able to capture both temporal and spatial fea-
tures, making it suitable for ECG applications.

The model used in this study is a modified CRNN from
[11] with 24 convolutional filters per layer to account
for the extra number of target classes. The convolutions
are 1D, treating the 12 leads as channels and the activa-
tion function is the LeakyReLU. The architecture includes
batch normalization (BN) to reduce internal covariate shift
[12], dropouts [13], a self-attention mechanism [14] and a
bidirectional gated recurrent unit (Bi-GRU) which is a type
of long short-term memory (LSTM) network.

The network is trained using the 10 second pre-
processed data. For faster convergence and stability dur-
ing training, it is common practice to perform input scal-
ing, thus each lead is normalized to zero mean, unit vari-
ance. The neuron weights are initialized using the Xavier
method, the Adam optimizer is selected, and the training
is performed with early stopping based on the validation
AUROC score.

Metric CRNN LightGBM Ensemble
AUROC 0.908 0.935 0.946

Challenge metric 0.511 0.549 0.593

Table 2. Average scores from 5-fold cross validation on
the training set. All models use GA optimized thresholds
in order to have comparable Challenge metrics.

2.5. Ensemble

As described in the previous sections, during both Light-
GBM and CRNN training, the Challenge metric is not
monitored. The goal is to create classifiers that are as accu-
rate as possible, because the Challenge metric is optimized
during the final merging process. The ensemble is a class-
depended weighted average, i.e. 24 different weights and
thresholds are assigned to each class so that:

pens[c] = pcrnn[c] · wc + plgbm[c] · (1− wc) (1)

l[c] =

{
1, if pens[c] ≥ thrc

0, if pens[c] < thrc
(2)

where wc is the weight, thrc is the threshold, pens[c],
pcrnn[c] and plgbm[c] are the probabilities of the ensemble,
CRNN and LightGBM, respectively, and l[c] is the label
of class c. These weights and thresholds are tuned by a
genetic algorithm (GA), that uses the negative value of a
5-fold Challenge metric average as the fitness function.

Finally, in order to reuse all training data, but also to im-
prove model robustness, 10-fold bagging is performed, i.e.
10 different ensemble models are trained, and their pre-
dicted probabilities are averaged for the final submission.

2.6. Validation

The provided datasets have severe class imbalances,
therefore, in order to perform reliable early stopping,
hyper-parameter tuning and model evaluation, all cross
validations must be done in a stratified manner. Since
the problem is multi-label, an iterative-stratification cross-
validation procedure is used as proposed in [15].

3. Results

The results from 5-fold cross validation on the training
set are compared in Table 2. Figure 2 illustrates the opti-
mal ensemble weights, as determined by the GA. The final
Challenge submission achieves a metric of 0.281 on the
full hidden test set.

4. Discussion

From Table 2 it is evident, that LightGBM performs bet-
ter, with a score of 0.549 compared to CRNN’s score of
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0.511. An overall comparison shows that the ensemble
outperforms both individual classifiers, achieving a score
of 0.593. This suggests that both models bring value to the
final classification, by complementing each other’s weak-
nesses. Since LightGBM relies on feature-engineering, its
advantage is that it can benefit from expert knowledge.
On the contrary, the CRNN does not need any a-priori
information extraction, because it can automatically learn
deep features. The drawback is that it cannot benefit from
domain-specific knowledge, because making informed ad-
justments in deep architectures is a non-trivial process.

The proposed approach, does not need any manual
weight adjustment, since it is done automatically by the
GA. The optimal weights also offer some form of inter-
pretability. Figure 2 shows that the GA generally gives
higher preference to LightGBM for HRV-related cardiac
arrhythmias and to CRNN for QRS morphology-related
abnormalities.

For future work, more domain-specific feature engineer-
ing will be pursued. Another potential avenue is to use seg-
mentation techniques, to address classes that contain infor-
mation in specific regions during long recordings.

5. Conclusion

This paper proposed an ensemble model for automatic
12-lead ECG classification of 24 types of cardiac abnor-
malities, as part of the PhysioNet/Computing in Cardiol-
ogy Challenge 2020. Both a feature-based and a deep
learning approach were implemented and efficiently com-
bined, using a genetic algorithm. The comparative evalua-
tion results demonstrate the effectiveness of the ensemble
process, as an automatic and interpretable method for com-
bining models.
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