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Abstract

In this work, we present a method to explain “end-to-
end” electrocardiogram (ECG) signal classifiers, where
the explanations were built along with seniors cardiolo-
gist to provide meaningful features to the final users. Our
method focuses exclusively on automated ECG diagnosis
and analyzes the explanation in terms of clinical accuracy
for interpretability and robustness. The proposed method
uses a noise-insertion strategy to quantify the impact of in-
tervals and segments of the ECG signals on the automated
classification outcome. An ECG segmentation method was
applied to ECG tracings, to obtain: (1) Intervals, Seg-
ments and Axis; (2) Rate, and (3) Rhythm. Noise was
added to the signal to disturb the ECG features in a real-
istic way. The method was tested using Monte Carlo sim-
ulation and the feature impact is estimated by the change
in the model prediction averaged over 499 executions and
a feature is defined as important if its mean value changes
the result of the classifier. We demonstrate our method by
explaining diagnoses generated by a deep convolutional
neural network. The proposed method is particularly ef-
fective and useful for modern deep learning models that
take raw data as input.

1. Introduction

Deep neural networks trained on large datasets have
demonstrated the ability to provide accurate automated
analysis of the electrocardiogram (ECG) [1, 2]. These
models use the raw signal, a 12-lead ECG, as an input to
the classifiers, being called “end-to-end” approaches. In
such approaches, the model has the ability to learn com-
plex patterns directly from the signal.

Classical methods for automated ECG analysis, such as
the University of Glasgow ECG analysis program [3], em-
ploy a two-step approach: (1) Extract the main features
of the ECG signal using traditional signal processing tech-
niques; and (2) Uses these features as inputs to a classifier.
In this approach, the models are built based on measures

and features that are known by the cardiologists, making it
easier to verify and to understand the algorithm decisions
and, also, to identify sources of algorithmic mistakes. In
“end-to-end” deep learning approaches such transparency
is not possible.

There are still significant challenges using deep neu-
ral networks for ECG interpretation,including several case
studies where the neural network learns to solve the task
in unwanted ways or for which small perturbations may
have a huge impact on the model prediction outcome [4].
In this work, we develop a method to understand the ECG
“end-to-end” classifiers and report a close-to-cardiologist
interpretation of the model output.

2. Methods

Our method quantifies the feature importance used in an
“end-to-end” approach. In Figure 1 we illustrate each step
of our method. As a case study, we applied it to analyze
a deep learning ECG classification model [1]. We extract
the features segmenting the ECG through the method Neu-
rokit [5].

The deep convolutional neural network under analysis
contains 9 convolutional layers and more than 6 million
trainable parameters and is depicted in Figure 2. This neu-
ral network was trained using a dataset that consists of
2,322,513 ECG records from 1,676,384 different patients
from 811 counties in the state of Minas Gerais/Brazil, ac-
quired through the Telehealth Network of Minas Gerais
(TNMG) [6]. Ninety-eight percent of the dataset was used
for training and 2% for hyperparameter tuning. The result-
ing model is capable of classifying the 6 abnormalities in
Figure 3: (1) 1st degree AtrioVentricular block (1dAVb);
(2) Right Bundle Branch Block (RBBB); (3) Left Bundle
Branch Block (LBBB); (4) Sinus Bradycardia (SB); (5)
Atrial Fibrillation (AF); and (6) Sinus Tachycardia (ST).

The proposed method is depicted in Figure 1 and can
be used to determine the interpretable features used by the
model. It inserts noise into the raw signal that is fed into
the model and computes the impact of each one of the fea-
tures on the classifier outcome through a Monte Carlo ap-
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Figure 1. General procedure of the proposed explanation method. In this figure we assign each step a different color and
number them to highlight their order.

Figure 2. The uni-dimensional residual neural network ar-
chitecture used for ECG classification. Reprinted from [1].

proximation, while assuring that the method did not intro-
duce an outlier that may impact the outcome significantly.
The method is summarized next:
1. Identification of the electrocardiogram waves. This step
is known as ECG segmentation, several previous works [5,
8] addressed this issue. Our empirical analysis identified
the algorithm [5] more suitable for our purposes.
2. Determination of the actual output of the sample given
by the ECG automated classifier [1].
3. Noise insertion. For each segment of the ECG, we in-
sert noise by changing its shape. The noise criteria were
defined together with cardiologists.
4. Impact assessment. We evaluate the impact of each fea-
ture to the real outcome and the simulation [9].

The noise insertion procedure was designed along with
a cardiologist to avoid creating an infeasible ECG signal.
All perturbations have zero mean except the Axis feature,
the standard deviations used for noise generation are:
• for derivations DI, DII, DIII, AVL, AVF:

– QRS = 1.55 mV
– T = 0.95 mV

• for derivations V1 - V6:
– QRS = 1.70 mV
– T = 1.10 mV

• for all derivations:
– P = 0.30 mV
– Duration = 400(ms)
– Axis mean = 90◦ and std = 30◦

In order to analyze our method efficacy, we assess the

Figure 3. A list of all the abnormalities the model clas-
sifies. We show only 3 representative leads (DII, V1 and
V6). Reprinted from [7].

explanation robustness. We define that a robust explana-
tion must report similar feature impacts for all samples
from the same class, that is, we did not expect to find sig-
nificantly different explanations for different occurrences
of the same disease. In order to assess robustness, we com-
pute the frequency of each feature composing an explana-
tion in the test set. We also tested five levels of noise in ran-
dom intervals, the level of noise is generated from a normal
distribution and variable variance, in this case 15%, 30%,
50%, 100%, and 200% of the signal variance. Finally we
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Table 1. Relevance of interpretable features modified by random noise for the automatic diagnosis of each ECG class
using the deep learning classifier.

Measurements
#Exams P Wave PR Interval QRS Complex QT Interval T Wave Heart Rate Rhythm

1dAVb 30 0.00 0.30 0.78 0.26 0.00 0.00 0.26
RBBB 38 0.00 0.00 0.52 0.00 0.21 0.48 0.64
LBBB 30 0.00 0.00 0.86 0.00 0.07 0.14 0.25

SB 18 0.00 0.00 0.00 0.00 0.00 0.86 1.00
AF 10 0.00 0.30 0.20 0.00 0.00 0.70 1.00
ST 38 0.00 0.00 0.03 0.00 0.00 0.69 1.00

analyze the correct clinical feature reported in the model,
we evaluated with the multilabel AUC score [10, 11].

3. Results

In Table 1, we show how frequently features impact sig-
nificantly each class. We observe that a common set of
features explains each class, confirming the robustness of
our explanations. We may also observe that there is a small
variation on the results, e.g., the QRS complex explains the
1dAVb in some cases. These errors are associated with seg-
mentation inaccuracies and correlations among features,
e.g., Heart rate affects the duration of the QRS complex. It
is important to highlight that the feature Heart rate is a co-
factor to the other features, and the variation on the ECG
frequency modifies the duration of all segments. Thus,
Heart rate can be used as duration criteria for other fea-
tures.

As we may expect, the random features did not impact
significantly the classifier performance, regardless the im-
pact level employed. As a consequence, we did not show
the random features results into Table 1. Notice that a fea-
ture does impact explanations if it affects a large number
of tests, then being an explanation for the classifier as re-
ported by our method.

The result presented by our model to the end user is the
impact that each interpretable feature has on the classifier,
depicted in Figure 4, as discussed in [9]. An explanation
consists of both a visual and a textual explanation. Each vi-
sual explanation is a horizontal bar graph where each bar is
associated with a feature, its length represents the impact,
and the error bar at the right end of the colored bar rep-
resents the impact standard deviation considering samples
from a given disease. Features that do not impact any of
the samples are omitted. The red dotted line is the usage
threshold of the feature, as proposed by [7]. The textual
explanation is an automatically generated text that reads
the visual explanation for the end user.

Figure 5 depicts the correct clinical features reported in
our model, in particular that every class are above the 0.7
AUC score in the table, except for the AF diagnosis.

4. Conclusions and future works

In this work we propose and evaluate a method special-
ized for ECG end-to-end ECG classifiers, designed with
features easily understandable by any cardiologist. Inter-
pretable methods for automated classification for health-
care give to the doctor tools to be applied in real contexts,
specially for cardiology, since any mistake may be fatal.
Several works show how models may be biased [12, 13]
and consistently make mistakes, even with high precision
in test sets. Our main premise is that an interpretation must
consist of features that are understandable by a specialist.
As far as the authors known, this is the first work that pro-
poses a method to generate explanations for an ECG clas-
sifier, using contextual features, that is, features that are
understandable by any cardiologist. Our presented model
is based on contextual features that support better explana-
tions of the results of a black-box classifier to a physician.

In order to improve our method, we need to enhance the
segmentation method. In particular, we expect that bet-
ter segmentation will support more precise explanations
and eliminate cases such as the AF classification example,
where the segmentation found a P wave even if one criteria
for AF is its absence.

We also want to perform a larger-scale experiment with
cardiologists, by providing the correct ECG along with
the classification explanation and measure the aggregated
value of our method to real life applications.
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