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Abstract 

Heart abnormalities cause about 26 % of the deaths of 

illnesses in the world. Developing computational tools for 

ECG interpretation plays a critical role in the clinical 

diagnosis of Cardiac arrhythmias (CAs). Aims: This study 

aimed to develop an automated abnormal pattern 

recognition method for clinical decision support capable 

of detecting between 27 possible CAs.  Proposal: An 

improved deep learning (DL) model was employed using 

raw-data and time-frequency representation (TFR) 

images. Methods: A vast set of ECG records were filtered 

and normalized. They were segmented and transformed 

into two sets of  2-D images. TFR images were obtained 

through Wavelet Synchrosqueezing (WS). The VGG-16 

network was chosen, modifying the weights of the inner 

layers to adapt the model to the CAs detection task. A 10-

fold cross-validation method was executed. Different 

training hyperparameters were tested to find the best 

model. Results: With the cross-validation on the training 

data, the model developed by our team UIDT-UNAM 

performed identifying CAs, with an overall unofficial S-

score of 0.766. This model had a high performance in 

detecting healthy subjects with an F1 score of 0.83.  We 

obtained these results using only the public training 

dataset. We plan to test these optimistic results with 

Physionet private dataset very soon. 

 

1. Introduction 

Heart abnormalities are the first cause of death for 

illnesses worldwide [1]. Cardiac arrhythmias (CAs) are the 

most frequent causes of them and contribute to 

approximately 15% to 20% of all deaths [2]. 

The standard 12-lead ECG is the most commonly used 

to diagnose cardiac abnormalities [3]. The early detection 

of  CAs and its treatment for sudden cardiac deaths (SCDs) 

prevention, represents a significant opportunity to reduce 

mortality further [1]. However, ECG manual interpretation 

is slow, requires training personnel with a high degree of 

technical knowledge, and suffers subjectivity.  

Physicians detect the action potentials of the signals and 

analyses the absence of P wave, morphologies irregular of 

QRS complexes, and irregularity of the segments. Recent 

results have shown that physicians have an accuracy rate 

of 75% in the detection procedure of some CAs [4]. 

Computational tools that using automatic detection and 

classification of CAs can assist physicians in the ECG 

diagnosis. Recently, there have been increasing numbers 

of research focused on 12-lead ECG classification through 

machine learning (ML) and deep learning (DL) algorithms. 

Theoretically, many of these algorithms have been 

accurate in the identification of CAs. However, the 

successful result of those tests is a consequence of using 

small and homogeneous datasets. The Physionet/CinC 

2020 challenge has provided a vast dataset for this purpose 

[5]. 

 

2. Material and methods 

The CAs detection method proposed here consists of the 

following stages: ECG data pre-processing (noise removal 

and data segmentation) and CAs classification (Signals 

transformation and final classification). In the first stage, 

the wavelet transform (WT) method was applied to denoise 

the ECG signal. Then, the signals were segmented in equal 

periods of duration, taking into account the signal 

morphology. In the second stage, the Wavelet 

synchrosqueezing (WS) method was applied to obtain the 

time-frequency representation (TFR) images, and the 

images of the raw signals were obtained. Finally, the 

arrangement of parallel convolutional neural networks 

(CNNs) based on VGG-16 was trained from scratch to 

identify 27 types of CAs. 

 

2.1. Data set 

 
Six public datasets of 12-leads ECG records coming 

from four different sources were used [5]. The datasets 

have a total of 111 identified CAs, of which just 27 general 

classes were chosen to be assessed  [5]. The dataset was 

divided randomly into three sets, training, validation, and 

local testing, with 70 %,  15 %, and 15 % of the data, 

respectively.  
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2.3. Signals denoising and segmentation 

Signals were purged, and irrelevant information was 

discarded. A denoising process was performed to eliminate 

outside signals related to the sampling procedure. The 

Wavelet transform (WT) method was used for this purpose 

with the Daubechies4 (db4) function since it allows 

decomposing the input signal into low and high-frequency 

components [5].  

Each file in each dataset contains the information 

corresponding to the 12-leads ECG. The first 6 s of each of 

the entire dataset signals were segmented in time intervals 

of 1.2 s. This interval size allows obtaining the relevant 

information around each peak, regardless of the type of CA 

that the patient presents, thus having each cycle of beats. 

 

2.3. Signals and TFR images 

Both sets of images were constructed by taking the 

segments of each signal. First, the segments were plotted 

as time series and saved as 64 x 64 greyscale images. The 

second set was built by transforming the signals using the 

WS method to obtain the TF features. With these features, 

the TFR images were obtained (see Fig. 2 b), d), and f)).  

The WS method used for TFR is based on the 

continuous wavelet transform (CWT)  [6]. In this 

transformation, concentrated high-resolution TF patterns 

are obtained, from which instantaneous frequency lines 

can be identified. The instantaneous frequency 𝜔(𝑎, 𝑏) for 

any point (𝑎, 𝑏) of the original signal with 𝑊𝑎,𝑏 ≠ 0 is 

given by: 

                           𝜔𝑎,𝑏 = −𝑖(𝑊𝑎,𝑏)
−1 𝜕

𝜕𝑏
𝑊𝑎,𝑏                     (1) 

 

Where 𝑎, 𝑏 and 𝑊𝑎,𝑏 are the scale factor, translational 

value, and WT, respectively. From this instantaneous 

frequency, the Synchrosqueezing discrete transform is 

determined at a local frequency point given by the 

transformation [6]: 

 

𝑇𝜔𝑙,𝑏 = (∆𝜔𝑎,𝑏)
−1

∑ 𝑊𝑎𝑘,𝑏𝑎𝑘
−

3
2(∆𝑎)𝑘

𝑎𝑘:|𝜔𝑎𝑘,𝑏.𝜔𝑙|≤∆𝜔/2

  (2) 

 

Finally, the representation of the signal in the TF space 

at high resolution is obtained. Fig. 1 shows both the raw 

signal and the TFR of three different types of CAs with the 

same window length of 1.2 s.  

Different features can be observed for each segment, 

especially the amplitude in the TFR and the morphology in 

the raw signal images. The representation of the signal 

segments in these two types of images gives relevant 

information no longer observed when using only one of the 

two representation types shown here. Then, it is possible to 

observe notable differences both in each class and to each 

kind of representation 

Figure 1. Transformation of the 1.2 s segments extracted 

from the signals to images: a, d) segment of normal sinus 

rhythm (NSR),  b, d) segment St depression (STD), and c, 

f) Premature atrial contraction (PAC). 

 

As a result, we obtained 120 images for each patient 

from the arrhythmia datasets used here.  

 

2.4. Deep learning model 

CNNs have proven useful for automatic feature 

extraction in detecting abnormal patterns in clinical images 

without pre-processing algorithms or manual intervention 

[7].  

A CNN is composed of an input and an output layer and 

many hidden layers composed of convolutional, pooling, 

and fully connected (FC) layers. The convolutional layers 

are locally connected to extract the features by applying a 

set of weights called kernels. The ReLU function for an 

input value 𝑥 is generally used as activation functions and 

is defined as: 

 

                         𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 < 0
𝑥, 𝑖𝑓 𝑥 ≥ 0

                                (3) 

 

Relevant high-level features can be extracted with an 

increasing number of convolutional layers. The weights of 

the convolutional kernel parameters in each layer are 

trained with the backpropagation (BP) algorithm [8].  

 

2.4.1. Model description 

This deep network model provides the automatic 

classification of input segments through an end-to-end 

structure without the need for any hand-made feature 
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extraction or selection steps.  

The deep network structure is composed of an 

arrangement based on the VGG-16 network [8], where the 

feature extraction stages (convolutions) are duplicated and 

arranged in parallel. 

 

Figure 2. The architecture of the classification model 

developed. 

 

This allows entry of the two independently constructed 

image sets. At the end of this arrangement, an FC network 

takes the output of convolution/pooling and predicts the 

best label to describe the image. The designed parallel 

CNNs model is shown in Fig. 2. 

The network input size parameters were modified to 

support the two sets of 64 x 64 grayscale images used as 

input of the model modified. During the training, the 120 

images constructed per patient of each of the classes pass 

through two 64 x 64 x 64 convolutional layers in the input 

layer and later through a max-pooling layer. The 

information is subsequently transferred to the following 

general layers. The second layer consists of two 

convolutional layers and one max-pooling layer. The next 

general layers are composed of three convolutional layers 

(see model characteristics in Fig. 2).  At the end of the 

convolution layers of each available layer, there is a max-

pooling layer. In convolutional layers are used filters with 

a kernel size of 3 x 3 and in the max-pooling layers a kernel 

size of 2 x 2.  

After the five general layers of parallel CNNs, there is a 

FC of three layers with a different architecture. The first 

layer of FC receives the 4096 features obtained. The last 

layer, called a sigmoid layer, contains 27 channels, and it 

is in charge of classifying 27 labels (one for each class, see 

network configuration in Fig. 2). Finally, the network gives 

the signal probability to present each of the 27 CAs to 

identify a CA.  

 

2.5. Model evaluation 

The proposed method was applied to the set of datasets 

obtained. Some parameters were calculated from the 

classification results with the designed model: the F1 score 

and average loss. The un-official S-score challenge was 

also computed [5] to assess the proposed parallel model 

effectiveness and reliability for the CAs identification. 

Although the dataset size is large, it is necessary to carry 

out the 10-folds cross-validation technique to stabilize the 

statistical model performance.  

 

3. Results 

The results of the implementation of the proposed 

model are shown. Also, a comparison of evaluation metrics 

is made with different training parameters tested to find the 

best model. 

The cross-validation method of 10-folds was carried out 

to assess the model. In the local testing process, an F1 score 

of 82.5% was reached with a loss of 0.0617 and an 

unofficial S-score of 76.56%.  

   

3.1. Model optimization 

For the optimization of the CNN, model parameters 

such as learning rate and the batch size are taking into 

account. The step of model parameter optimization is 

indispensable to achieve the best classification 

performance. 

 
 

Table 1. F1 score and average loss (A. Loss) when 

performing batch size variation. 

 

Batch size L. Rate F1-Score A. Loss 

1024 

0.001 

0.804 0.0645 

512 0.825 0.0617 

256 0.818 0.0706 

128 0.807 0.0641 

64 0.812 0.0770 

 

A set of variations in the batch size value was carried 

out to assess the proposed model's best performance. The 

batch size was modified five times, and the learning rate 

was automatically updated in the training process.  

The number of epochs was set in 50. As a result, it was 

found that the best batch size value for the training process 

was 512. A lower loss and a higher overall F1 score were 

observed (see Tab. 1). 

 

3.2. Comparison with other models  

   As an additional test, the classification of the CAs was 

performed by implementing two other widely-used CNNs 

to compare them with the proposed model. 

Page 3



 

 

 

Table 2. Comparison of the performances of three CAs 

classification algorithms. 

 

Model F-1 Score A. Loss 

VGG-19 0.813 0.075 

ResNet-50 0.764 0.102 

Proposed 0.825 0.062 

 

   From the results, it was observed that although the 

training time of the model proposed here is longer than that 

of Resnet-50 and that the VGG-19 network is more robust 

than the VGG-16, the evaluation of test signals gives a very 

accurate result with modified VGG-16 (see the comparison 

in Tab. 2). 

 

4. Discussion 

   The comparison of results was performed using only 

TFR images, only the raw data images, and both. Using 

only the TFR images, an F1 score of 76 +/- 2 was obtained 

and with the raw images of 66 +/- 3. For this reason, it was 

convenient to place them in parallel. Putting them in 

parallel allowed obtaining feature patterns in a time 

window as doctors do. At the same time, the features in the 

time-frequency window were extracted from their 

instantaneous energy. 

   The classification interferences found were mainly 

attributed to the morphology similarity between the 

different kinds of cardiac abnormalities present in the 

dataset, despite the class size difference. This characteristic 

in the classification makes this model suitable for 

unbalanced classes. However, it needs to be improved to 

differentiate between classes with similar characteristics 

properly. The realization of these adjustments in the 

classification methodology is proposed as future work 

presented here. 

 

5. Conclusion 

In this paper, our team UIDT-UNAM proposed a useful 

CAs classification model using a parallel CNN with ECG 

images based on the VGG-16 network. As an input, two 

sets of 64 x 64 grayscale images were transformed from 

dataset ECG records. Over 37134 12-leads ECG records 

were processed, and near to 4456080 ECG beat images 

were obtained with 26 types of CAs and the normal 

rhythm. The optimized CNN model was designed with 

considering essential concepts such as  10-fold cross-

validation. As a result, our proposed scheme achieved 

91.57% SP, 82.50% F1-score, and 76.60% S-score. Our 

ECG classification result indicates that the identification of 

arrhythmia with 2-D images and the VGG-16 model would 

be a practical approach to detecting CAs from 12-leads 

ECG signals. It is important to mention that this approach, 

with its encouraging results, will be verified very soon with 

the private dataset that is hosted on Physionet servers [5]. 
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